Sparse approximationSparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in , signal processing, machine learning, medical imaging, and more. Consider a linear system of equations , where is an underdetermined matrix and . The matrix (typically assumed to be full-rank) is referred to as the dictionary, and is a signal of interest.
Statistical shape analysisStatistical shape analysis is an analysis of the geometrical properties of some given set of shapes by statistical methods. For instance, it could be used to quantify differences between male and female gorilla skull shapes, normal and pathological bone shapes, leaf outlines with and without herbivory by insects, etc. Important aspects of shape analysis are to obtain a measure of distance between shapes, to estimate mean shapes from (possibly random) samples, to estimate shape variability within samples, to perform clustering and to test for differences between shapes.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Medical image computingMedical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Surface de RiemannEn géométrie différentielle et géométrie analytique complexe, une surface de Riemann est une variété complexe de dimension 1. Cette notion a été introduite par Bernhard Riemann pour prendre en compte les singularités et les complications topologiques qui accompagnent certains prolongements analytiques de fonctions holomorphes. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Surface (topology)In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.
Coordonnées généraliséesthumb|Calcul de vecteurs dans un système de coordonnées généralisées cartésien. On appelle coordonnées généralisées d'un système physique un ensemble de variables réelles, qui ne correspondent pas toutes à des coordonnées cartésiennes (par exemple : angles, positions relatives), et permettant de décrire ce système, en particulier dans le cadre de la mécanique lagrangienne. Le terme « généralisées » vient de l'époque où les coordonnées cartésiennes étaient considérées comme étant les coordonnées normales ou naturelles.
Rotation (physique)En cinématique, l'étude des corps en rotation est une branche fondamentale de la physique du solide et particulièrement de la dynamique, y compris de la dynamique des fluides, qui complète celle du mouvement de translation. L'analyse du mouvement de rotation se prolonge y compris aux échelles atomiques, avec la dynamique moléculaire et l'étude de la fonction d'onde en mécanique quantique.