Résumé
thumb|Calcul de vecteurs dans un système de coordonnées généralisées cartésien. On appelle coordonnées généralisées d'un système physique un ensemble de variables réelles, qui ne correspondent pas toutes à des coordonnées cartésiennes (par exemple : angles, positions relatives), et permettant de décrire ce système, en particulier dans le cadre de la mécanique lagrangienne. Le terme « généralisées » vient de l'époque où les coordonnées cartésiennes étaient considérées comme étant les coordonnées normales ou naturelles. Pour un système physique, on distingue les conditions physiques qui s'exercent sur lui de ses contraintes propres qui sont des hypothèses de rigidités, des limitations de son cadre d'évolution, etc. Les contraintes du système introduisent des dépendances entre les coordonnées, et font baisser le nombre de variables numériques (coordonnées) nécessaires à sa description. Tenant compte de cela les conditions physiques déterminent l'évolution temporelle des coordonnées. Les coordonnées généralisées ne sont pas toujours supposées indépendantes, et leur intérêt, par rapport aux seules coordonnées cartésiennes, est de pouvoir choisir les coordonnées les plus adaptées pour représenter le système, en tenant compte de ses contraintes. Par exemple, dans le cas d'un pendule, il est avantageux d'utiliser l'angle du pendule parmi les coordonnées généralisées. Les coordonnées généralisées sont au nombre de , où N est le nombre de points permettant de décrire le système et sont souvent notées L'unité de mesure des n'est pas obligatoirement une distance : par exemple des coordonnées peuvent être des angles. Il est même imaginable que chaque coordonnée ait sa propre unité de mesure. L'objectif est d'exprimer les comme des fonctions du temps (), un choix judicieux des aidant à approcher cet idéal. Et sachant que , si la description est obtenue, on peut obtenir la description du système sous la forme . Sauf dans les cas les plus simples, cet objectif n'est jamais atteint mais le physicien arrive en général à obtenir quand même de nombreuses informations.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.