Sous-groupe de HallEn théorie des groupes (une branche des mathématiques), les sous-groupes de Hall d'un groupe fini sont les sous-groupes dont l'ordre et l'indice sont premiers entre eux. Ils portent le nom du mathématicien Philip Hall. Soit un groupe fini. Un sous-groupe de est appelé un sous-groupe de Hall de si son ordre est premier avec son indice dans . Autrement dit, un sous-groupe de est dit sous-groupe de Hall si est premier avec . Cela revient encore à dire que pour tout diviseur premier p de , la puissance à laquelle p figure dans est la même que celle à laquelle il figure dans .
Groupe abélienEn mathématiques, plus précisément en algèbre, un groupe abélien (du nom de Niels Abel), ou groupe commutatif, est un groupe dont la loi de composition interne est commutative. Vu autrement, un groupe commutatif peut aussi être défini comme un module sur l'anneau commutatif des entiers relatifs ; l'étude des groupes abéliens apparaît alors comme un cas particulier de la théorie des modules. On sait classifier de façon simple et explicite les groupes abéliens de type fini à isomorphisme près, et en particulier décrire les groupes abéliens finis.
Groupe orthogonalEn mathématiques, le groupe orthogonal réel de degré n, noté O(n), est le groupe des transformations géométriques d'un espace Euclidien de dimension n qui préservent les distances (isométries) et le point origine de l'espace. Formellement, on introduit le groupe orthogonal d'une forme quadratique q sur E, espace vectoriel sur un corps commutatif K, comme le sous-groupe du groupe linéaire GL(E) constitué des automorphismes f de E qui laissent q invariante : pour tout vecteur x de E.
Torsion groupIn group theory, a branch of mathematics, a torsion group or a periodic group is a group in which every element has finite order. The exponent of such a group, if it exists, is the least common multiple of the orders of the elements. For example, it follows from Lagrange's theorem that every finite group is periodic and it has an exponent dividing its order. Examples of infinite periodic groups include the additive group of the ring of polynomials over a finite field, and the quotient group of the rationals by the integers, as well as their direct summands, the Prüfer groups.
Central seriesIn mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, the existence of a central series means it is a nilpotent group; for matrix rings (considered as Lie algebras), it means that in some basis the ring consists entirely of upper triangular matrices with constant diagonal. This article uses the language of group theory; analogous terms are used for Lie algebras.
Closed-subgroup theoremIn mathematics, the closed-subgroup theorem (sometimes referred to as Cartan's theorem) is a theorem in the theory of Lie groups. It states that if H is a closed subgroup of a Lie group G, then H is an embedded Lie group with the smooth structure (and hence the group topology) agreeing with the embedding. One of several results known as Cartan's theorem, it was first published in 1930 by Élie Cartan, who was inspired by John von Neumann's 1929 proof of a special case for groups of linear transformations.
Sous-groupe de FittingSoit G un groupe, au sens mathématique. Le sous-groupe de Fitting de G est un certain sous-groupe caractéristique de G qui intervient de façon importante dans la partie de la théorie des groupes finis appelée analyse locale. Le théorème de Fitting, énoncé et démontré par Hans Fitting en 1938, peut s'énoncer comme suit : Si H1, ...., Hn sont des sous-groupes normaux nilpotents de G, de classes de nilpotence respectives c1, ...., cn, alors le sous-groupe de G engendré par H1, ...
Linear algebraic groupIn mathematics, a linear algebraic group is a subgroup of the group of invertible matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of . Many Lie groups can be viewed as linear algebraic groups over the field of real or complex numbers. (For example, every compact Lie group can be regarded as a linear algebraic group over R (necessarily R-anisotropic and reductive), as can many noncompact groups such as the simple Lie group SL(n,R).
Automorphism groupIn mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear group of X). If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X. Especially in geometric contexts, an automorphism group is also called a symmetry group.
Congruence subgroupIn mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.