Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Object co-segmentationIn computer vision, object co-segmentation is a special case of , which is defined as jointly segmenting semantically similar objects in multiple images or video frames. It is often challenging to extract segmentation masks of a target/object from a noisy collection of images or video frames, which involves object discovery coupled with . A noisy collection implies that the object/target is present sporadically in a set of images or the object/target disappears intermittently throughout the video of interest.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Réseau neuronal résidueldroite|vignette| Forme canonique d'un réseau neuronal résiduel. Une couche l − 1 est ignoré sur l'activation de l − 2. Un réseau neuronal résiduel ( ResNet ) est un réseau neuronal artificiel (ANN). Il s'agit d'une variante du HighwayNet , le premier réseau neuronal à action directe très profond avec des centaines de couches, beaucoup plus profond que les réseaux neuronaux précédents. Les sauts de connexion ou "raccourcis" sont utilisés pour passer par-dessus certaines couches ( les HighwayNets peuvent également avoir des poids pour les saut eux-mêmes, grâce à une matrice de poids supplémentaire pour leurs portes).
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Similarité sémantiqueLa similarité sémantique est une notion définie entre deux concepts soit au sein d'une même hiérarchie conceptuelle, soit - dans le cas d'alignement d'ontologies - entre deux concepts appartenant respectivement à deux hiérarchies conceptuelles distinctes. La similarité sémantique indique que ces deux concepts possèdent un grand nombre d'éléments en commun (propriétés, termes, instances). D’un point de vue psychologie cognitive, les notions de proximité et de similarité sont bien distinctes.
Véhicule autonomevignette|Le Chrysler Pacifica équipé de la technologie autonome Waymo. vignette|droite|Voiture autonome dont on distingue certains capteurs sur le toit. vignette|Une voiture sans pilote Robocar en présentation au grand prix de Formule E de 2017 à New York. vignette|Les voitures de Sber Autotech sont formées sur le terrain d'entraînement. Un véhicule autonome, véhicule automatisé, véhicule à délégation de conduite ou véhicule entièrement automatisé est un véhicule automobile capable de rouler sans intervention d'un conducteur.
Rouge-vert-bleuvignette|Cellules lumineuses rouge, vert, bleu d'un écran vidéo, en gros plan. Rouge-vert-bleu (RVB, ou RGB pour l'anglais red-green-blue) désigne un système de traitement optique, d'affichage électronique ou d'un codage de signal vidéo analogique ou un codage informatique des couleurs. Pour restituer la perception humaine colorée d'une image, différentes méthodes existent, en peinture, en imprimerie, en projection photographique, vidéo ou en affichage électronique et notamment, grâce au principe de la trichromie.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.