Exposant critiqueLors d'une transition de phase de deuxième ordre, au voisinage du point critique, les systèmes physiques ont des comportements universels en lois de puissances caractérisées par des exposants critiques. Au point critique, un fluide est caractérisé par une température critique et une densité critique . Pour une température légèrement supérieure à (à nombre de particules et volume constants), le système est homogène avec une densité . Pour une température légèrement inférieure à , il y a une séparation de phase entre une phase liquide (de densité ) et une phase gazeuse (de densité ).
Percolation thresholdThe percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them.
Point critique (thermodynamique)vignette| Le point critique d'un corps pur est le point du diagramme température-pression, généralement noté C, où s'arrête la courbe d'équilibre liquide-gaz. La température T et la pression P du point critique sont appelées température critique et pression critique du corps pur. Le volume molaire et la masse volumique du corps pur à ces température et pression (V et ρ) sont appelés volume critique et masse volumique critique (plus souvent, mais improprement, densité critique).
Percolationvignette|Schéma de l'hydrosystème karstique : infiltrations dans le sol et la roche. La percolation (du latin percolare, « filtrer », « passer au travers ») désigne communément le passage d'un fluide à travers un milieu poreux ou fissuré plus ou moins perméable. Un exemple de la vie courante est celui de l'écoulement de l'eau au travers de la poudre de café moulu contenu dans le filtre d'une machine à café (d'où le nom de percolateur).
Théorie de la percolationLa théorie de la percolation est une branche de la physique statistique et mathématique qui s'intéresse aux caractéristiques des milieux aléatoires, plus précisément aux ensembles de sommets connectés dans un graphe aléatoire. Cette théorie s'applique notamment en science des matériaux pour formaliser les propriétés d'écoulement dans les milieux poreux et pour la modélisation de phénomènes naturels, comme les incendies. L’histoire de la percolation prend ses racines dans l’industrie du charbon.
Modèle d'IsingLe modèle d'Ising est un modèle de physique statistique qui a été adapté à divers phénomènes caractérisés par des interactions locales de particules à deux états. L'exemple principal est le ferromagnétisme pour lequel le modèle d'Ising est un modèle sur réseau de moments magnétiques, dans lequel les particules sont toujours orientées suivant le même axe spatial et ne peuvent prendre que deux valeurs. Ce modèle est parfois appelé modèle de Lenz-Ising en référence aux physiciens Wilhelm Lenz et Ernst Ising.
Phénomène critiquevignette|Point critique de l'éthane : 1. état subcritique, liquide et gaz ; 2. opalescence critique ; 3. fluide supercritique. En physique, un phénomène critique est un phénomène associé à une transition de phase du deuxième ordre d'un système thermodynamique. Par exemple la transition de phase ferromagnétique et le comportement au voisinage du point critique liquide-gaz. La plupart des phénomènes critiques proviennent d'une divergence de la ou d'un ralentissement de la dynamique.
Transition de phasevignette|droite|Noms exclusifs des transitions de phase en thermodynamique. En physique, une transition de phase est la transformation physique d'un système d'une phase vers une autre, induite par la variation d'un paramètre de contrôle externe (température, champ magnétique...). Une telle transition se produit lorsque ce paramètre externe atteint une valeur seuil (ou valeur « critique »). La transformation traduit généralement un changement des propriétés de symétrie du système.
Température de CurieLa température de Curie (ou point de Curie) d'un matériau ferromagnétique ou ferrimagnétique est la température T à laquelle le matériau perd son aimantation permanente. Le matériau devient alors paramagnétique. Ce phénomène a été découvert par le physicien français Pierre Curie en 1895. L’aimantation permanente est causée par l’alignement des moments magnétiques. La susceptibilité magnétique au-dessus de la température de Curie peut alors être calculée à partir de la loi de Curie-Weiss, qui dérive de la loi de Curie.
Percolation critical exponentsIn the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered.