Convertisseur analogique-numériquevignette|Symbole normé du convertisseur analogique numérique Un convertisseur analogique-numérique (CAN, parfois convertisseur A/N, ou en anglais ADC pour Analog to Digital Converter ou plus simplement A/D) est un dispositif électronique dont la fonction est de traduire une grandeur analogique en une valeur numérique codée sur plusieurs bits. Le signal converti est généralement une tension électrique. Le résultat de la conversion s'obtient par la formule : où Q est le résultat de Conversion, Ve, la tension à convertir, n le nombre de bits du convertisseur et Vref la tension de référence de la mesure.
Convertisseur numérique-analogiqueUn convertisseur numérique-analogique (CNA, de N/A pour numérique vers analogique ou, en anglais, DAC, de D/A pour Digital to Analog Converter) est un composant électronique dont la fonction est de transformer une valeur numérique (codée sur plusieurs bits) en une valeur analogique proportionnelle à la valeur numérique codée. Généralement la sortie du convertisseur est une tension électrique, mais certains convertisseurs ont une sortie en courant. N/A = Fréquence / Bits Il existe plusieurs solutions pour créer un signal analogique à partir d'un système numérique.
Modulation d'amplitudeLa modulation d'amplitude ou MA (AM en anglais) est une technique utilisée pour moduler un signal. Elle consiste en la multiplication du signal à moduler par un signal de fréquence moins élevée. La modulation d'amplitude consiste à faire varier l'amplitude d'un signal de fréquence élevée, le signal porteur, en fonction d'un signal de plus basse fréquence, le signal modulant. Ce dernier est celui qui contient l'information à transmettre (voix, par exemple, recueillie par un microphone).
Nyquist rateIn signal processing, the Nyquist rate, named after Harry Nyquist, is a value (in units of samples per second or hertz, Hz) equal to twice the highest frequency (bandwidth) of a given function or signal. When the function is digitized at a higher sample rate (see ), the resulting discrete-time sequence is said to be free of the distortion known as aliasing. Conversely, for a given sample-rate the corresponding Nyquist frequency in Hz is one-half the sample-rate.
Modulation du signalEn télécommunications, le signal transportant une information doit passer par un moyen de transmission entre un émetteur et un récepteur. Le signal est rarement adapté à la transmission directe par le canal de communication choisi, hertzien, filaire, ou optique. La modulation peut être définie comme le processus par lequel le signal est transformé de sa forme originale en une forme adaptée au canal de transmission, par exemple en faisant varier les paramètres d'amplitude et d'argument (phase/fréquence) d'une onde sinusoïdale appelée porteuse.
Fréquence de NyquistLa fréquence de Nyquist, du nom de l'ingénieur électronicien Harry Nyquist, est la fréquence maximale que doit contenir un signal pour permettre sa description non ambiguë par un échantillonnage à intervalles réguliers. Elle est aussi connue sous le nom de fréquence limite de repliement. Elle est égale à la moitié de la fréquence d'échantillonnage. Le théorème d'échantillonnage procède de l'analyse spectrale, qui montre que tout signal peut se décomposer en une somme de sinusoïdes.
Théorème d'échantillonnageLe théorème d'échantillonnage, dit aussi théorème de Shannon ou théorème de Nyquist-Shannon, établit les conditions qui permettent l'échantillonnage d'un signal de largeur spectrale et d'amplitude limitées. La connaissance de plus de caractéristiques du signal permet sa description par un nombre inférieur d'échantillons, par un processus d'acquisition comprimée. Dans le cas général, le théorème d'échantillonnage énonce que l’échantillonnage d'un signal exige un nombre d'échantillons par unité de temps supérieur au double de l'écart entre les fréquences minimale et maximale qu'il contient.
Modulation de fréquenceright|Illustration de modulation en amplitude et en fréquence. La modulation de fréquence ou MF (FM en anglais) est un mode de modulation consistant à transmettre un signal par la modulation de la fréquence d'un signal porteur (porteuse). On parle de modulation de fréquence par opposition à la modulation d'amplitude. En modulation de fréquence, l'information est portée par une modification de la fréquence de la porteuse, et non par une variation d'amplitude.
Modulation par impulsions et codageLa modulation par impulsions et codage ou MIC (en anglais : pulse-code modulation), généralement abrégé en PCM est une représentation numérique d'un signal électrique résultant d'un processus de numérisation. Le signal est d'abord échantillonné, puis chaque échantillon est quantifié indépendamment des autres échantillons, et chacune des valeurs quantifiées est convertie en un code numérique. Le traitement indépendant de chaque échantillon implique qu'il n'y a ni chiffrement, ni compression de données.
Traitement numérique du signalLe traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analogiques qui est réalisé par des dispositifs en électronique analogique, le traitement des signaux numériques est réalisé par des machines numériques (des ordinateurs ou des circuits dédiés). Ces machines numériques donnent accès à des algorithmes puissants, tel le calcul de la transformée de Fourier.