Algèbre multilinéaireEn mathématiques, l’algèbre multilinéaire étend les méthodes de l’algèbre linéaire. Tout comme l’algèbre linéaire est bâtie sur le concept de vecteur et développe la théorie des espaces vectoriels, l’algèbre multilinéaire est bâtie sur le concept de tenseur et développe la théorie des espaces tensoriels. Dans les applications, de nombreux types de tenseurs surviennent. La théorie se veut exhaustive et comprend l'étude d'un certain nombre d'espaces et l'exposé de leurs relations.
Polynôme formelEn algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
Algèbre de CliffordEn mathématiques, l'algèbre de Clifford est un objet d'algèbre multilinéaire associé à une forme quadratique. C'est une algèbre associative sur un corps, permettant un type de calcul étendu, englobant les vecteurs, les scalaires et des « multivecteurs » obtenus par produits de vecteurs, et avec une règle de calcul qui traduit la géométrie de la forme quadratique sous-jacente. Le nom de cette structure est un hommage au mathématicien anglais William Kingdon Clifford.
Algèbre involutiveEn mathématiques, une algèbre involutive ou une algèbre à involution est une algèbre munie d'un isomorphisme sur son algèbre opposée qui est involutif, c'est-à-dire de carré égal à l'identité. Dans cet article, K désigne un anneau commutatif, et les algèbres sur un anneau commutatif sont supposées être associatives et unitaires, et les homomorphismes entre algèbres sont supposés être unitaires, c'est-à-dire envoyer 1 sur 1. Soient A une algèbre sur K et μ la multiplication de A.