Extension abélienneEn algèbre générale, plus précisément en théorie de Galois, une extension abélienne est une extension de Galois dont le groupe de Galois est abélien. Lorsque ce groupe est cyclique, l'extension est dite cyclique. Toute extension finie d'un corps fini est une extension cyclique. L'étude de la théorie des corps de classes décrit de façon détaillée toutes les extensions abéliennes dans le cas des corps de nombres, et des corps de fonctions de courbes algébriques sur des corps finis, ainsi que dans le cas des corps locaux (Théorie du corps de classes local).
Polynôme minimal (théorie des corps)thumb|Carl Friedrich Gauss utilise des polynômes minimaux appelés cyclotomiques pour déterminer les polygones constructibles à la règle et au compas. En théorie des corps, le polynôme minimal sur un corps commutatif K d'un élément algébrique d'une extension de K, est le polynôme unitaire de degré minimal parmi les polynômes à coefficients dans le corps de base K qui annulent l'élément. Il divise tous ces polynômes. C'est toujours un polynôme irréductible.
Théorème des restes chinoisEn mathématiques, le théorème des restes chinois est un résultat d'arithmétique modulaire traitant de résolution de systèmes de congruences. Ce résultat, initialement établi pour Z/nZ, se généralise en théorie des anneaux. Ce théorème est utilisé en théorie des nombres. vignette|Exemple de Sun Zi : il y a 23 objets. La forme originale du théorème apparait sous forme de problème dans le livre de Sun Zi, le , datant du . Il est repris par le mathématicien chinois Qin Jiushao dans son ouvrage le Shùshū Jiǔzhāng (« Traité mathématique en neuf chapitres ») publié en 1247.
Corps algébriquement closEn mathématiques, un corps commutatif K est dit algébriquement clos si tout polynôme de degré supérieur ou égal à un, à coefficients dans K, admet (au moins) une racine dans K. Autrement dit, c'est un corps qui n'a pas d'extension algébrique propre. Si K est algébriquement clos, tout polynôme non constant à coefficients dans K est scindé dans K, c'est-à-dire produit de polynômes du premier degré. Le nombre de ses racines dans K (comptées avec leur ordre de multiplicité) est donc exactement égal à son degré.
Cryptographie quantiqueLa cryptographie quantique consiste à utiliser les propriétés de la physique quantique pour établir des protocoles de cryptographie qui permettent d'atteindre des niveaux de sécurité qui sont prouvés ou conjecturés non atteignables en utilisant uniquement des phénomènes classiques (c'est-à-dire non-quantiques). Un exemple important de cryptographie quantique est la distribution quantique de clés, qui permet de distribuer une clé de chiffrement secrète entre deux interlocuteurs distants, tout en assurant la sécurité de la transmission grâce aux lois de la physique quantique et de la théorie de l'information.
Identité trigonométriqueUne identité trigonométrique est une relation impliquant des fonctions trigonométriques, vérifiée pour toutes les valeurs possibles des variables intervenant dans la relation. Ces identités peuvent servir à simplifier une expression comportant des fonctions trigonométriques ou à la transformer (par exemple pour en calculer une primitive). Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes. Les fonctions trigonométriques sont définies géométriquement ou analytiquement.
FactorisationEn mathématiques, la factorisation consiste à écrire une expression algébrique (notamment une somme), un nombre, une matrice sous la forme d'un produit. Cette transformation peut se faire suivant différentes techniques détaillées ci-dessous. Les enjeux de la factorisation sont très divers : à un niveau élémentaire, le but peut être de ramener la résolution d'une équation à celle d'une équation produit-nul, ou la simplification d'une écriture fractionnaire ; à un niveau intermédiaire, la difficulté algorithmique présumée de la factorisation des nombres entiers en produit de facteurs premiers est à la base de la fiabilité du cryptosystème RSA.
PresentThe present is the period of time that is occurring now. The present is contrasted with the past, the period of time that has already occurred, and the future, the period of time that has yet to occur. It is sometimes represented as a hyperplane in space-time, typically called "now", although modern physics demonstrates that such a hyperplane cannot be defined uniquely for observers in relative motion. The present may also be viewed as a duration.
AC powerIn an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the direction of energy flow. Its SI unit is the watt. The portion of instantaneous power that, averaged over a complete cycle of the AC waveform, results in net transfer of energy in one direction is known as instantaneous active power, and its time average is known as active power or real power.
Multiplicative group of integers modulo nIn modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n.