Domaine protéiqueredresse=1.15|vignette|Exemples de structures de protéines organisées en domaines distincts. Le domaine de couleur brique, appelé domaine PH, est commun aux deux protéines,. Sa fonction est de fixer le phosphatidylinositol-3,4,5-trisphosphate (PIP3) Un domaine protéique est une partie d'une protéine capable d'adopter une structure de manière autonome ou partiellement autonome du reste de la molécule. C'est un élément modulaire de la structure des protéines qui peuvent ainsi être composées de l'assemblage de plusieurs de ces domaines.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Structure des protéinesLa structure des protéines est la composition en acides aminés et la conformation en trois dimensions des protéines. Elle décrit la position relative des différents atomes qui composent une protéine donnée. Les protéines sont des macromolécules de la cellule, dont elles constituent la « boîte à outils », lui permettant de digérer sa nourriture, produire son énergie, de fabriquer ses constituants, de se déplacer, etc. Elles se composent d'un enchaînement linéaire d'acides aminés liés par des liaisons peptidiques.
Biosynthèse des protéinesvignette|Traduction de l'ARN messager en protéine par un ribosome. vignette|Structure générale d'un ARN de transfert. L'anticodon est en rouge. vignette|Appariement de l'anticodon d'ARNt d'alanine sur son codon d'ARNm. La biosynthèse des protéines est l'ensemble des processus biochimiques permettant aux cellules de produire leurs protéines à partir de leurs gènes afin de compenser les pertes en protéines par sécrétion ou par dégradation.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Stereographic map projectionThe stereographic projection, also known as the planisphere projection or the azimuthal conformal projection, is a conformal map projection whose use dates back to antiquity. Like the orthographic projection and gnomonic projection, the stereographic projection is an azimuthal projection, and when on a sphere, also a perspective projection. On an ellipsoid, the perspective definition of the stereographic projection is not conformal, and adjustments must be made to preserve its azimuthal and conformal properties.
Microscopie électronique à balayagethumb|right|Premier microscope électronique à balayage par M von Ardenne thumb|right|Microscope électronique à balayage JEOL JSM-6340F thumb|upright=1.5|Principe de fonctionnement du Microscope Électronique à Balayage La microscopie électronique à balayage (MEB) ou scanning electron microscope (SEM) en anglais est une technique de microscopie électronique capable de produire des images en haute résolution de la surface d’un échantillon en utilisant le principe des interactions électrons-matière.
Microscopie électronique en transmissionvignette|upright=1.5|Principe de fonctionnement du microscope électronique en transmission. vignette|Un microscope électronique en transmission (1976). La microscopie électronique en transmission (MET, ou TEM pour l'anglais transmission electron microscopy) est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince. Les effets d'interaction entre les électrons et l'échantillon donnent naissance à une image, dont la résolution peut atteindre 0,08 nanomètre (voire ).
Méthodes de Runge-KuttaLes méthodes de Runge-Kutta sont des méthodes d'analyse numérique d'approximation de solutions d'équations différentielles. Elles ont été nommées ainsi en l'honneur des mathématiciens Carl Runge et Martin Wilhelm Kutta, lesquels élaborèrent la méthode en 1901. Ces méthodes reposent sur le principe de l'itération, c'est-à-dire qu'une première estimation de la solution est utilisée pour calculer une seconde estimation, plus précise, et ainsi de suite. Considérons le problème suivant : que l'on va chercher à résoudre en un ensemble discret t < t < .
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.