Problème NP-completEn théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
Probabilité a posterioriDans le théorème de Bayes, la probabilité a posteriori désigne la probabilité recalculée ou remesurée qu'un évènement ait lieu en prenant en considération une nouvelle information. Autrement dit, la probabilité a posteriori est la probabilité qu'un évènement A ait lieu étant donné que l'évènement B a eu lieu. Elle s'oppose à la probabilité a priori dans l'inférence bayésienne. La loi a priori qu'un évènement ait lieu avec vraisemblance est .
Hiérarchie polynomialeEn théorie de la complexité, la hiérarchie polynomiale est une hiérarchie de classes de complexité qui étend la notion de classes P, NP, co-NP. La classe PH est l'union de toutes les classes de la hiérarchie polynomiale. Il existe plusieurs définitions équivalentes des classes de la hiérarchie polynomiale. On peut définir la hiérarchie à l'aide des quantificateurs universel () et existentiel ().
Schéma d'approximation en temps polynomialEn informatique, un schéma d'approximation en temps polynomial (en anglais polynomial-time approximation scheme, abrégé en PTAS) est une famille d'algorithmes d'approximation pour des problèmes d'optimisation combinatoire. On dit aussi plus simplement schéma d'approximation polynomial. Le plus souvent, les problèmes d'optimisation combinatoire considérés sont NP-difficiles. Plusieurs variantes des PTAS existent : des définitions plus restrictives comme les EPTAS et FPTAS, ou d'autres qui reposent sur les algorithmes probabilistes comme les PRAS et FPRAS.
Prise de décisionvignette|Lorsqu'il s'agit de prendre une décision, il est bon de savoir que des situations différentes nécessitent une approche différente. Il n'y a pas de façon unique de penser/d'agir. la plupart du temps, nous errons dans l'espace du désordre, sans savoir ce qui se passe, sans savoir comment agir. Dans ce cas, nous avons tendance à entrer dans l'espace avec lequel nous nous sentons le plus à l'aise et à commencer à agir. Lorsque vous avez trouvé le Saint Graal, la solution unique pour chaque problème, vous feriez mieux de faire attention.
NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Problème P ≟ NPvignette|400px|Représentation visuelle des deux configurations possibles. Le problème P ≟ NP est une conjecture en mathématiques, et plus précisément en informatique théorique, considérée par de nombreux chercheurs comme une des plus importantes conjectures du domaine, et même des mathématiques en général. L'Institut de mathématiques Clay a inclus ce problème dans sa liste des sept problèmes du prix du millénaire, et offre à ce titre un million de dollars à quiconque sera en mesure de démontrer P = NP ou P ≠ NP ou de démontrer que ce n'est pas démontrable.
Utilité marginaleL'utilité marginale est un concept économique. Elle désigne l'utilité qu'un agent économique tire de la consommation d'une quantité supplémentaire d'un bien. Le raisonnement est dit à la marge parce que l'utilité marginale consiste en l'utilité par unité supplémentaire consommée. Comme l'a observé l'ingénieur Dupuit dès 1844, l'utilité marginale décroît marginalement, ce qui signifie qu'il arrive un moment où une unité supplémentaire de consommation d'un bien apporte moins d'utilité ou de plaisir que la consommation de l'unité précédente.
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Théorie de la décisionLa théorie de la décision est une théorie de mathématiques appliquées ayant pour objet la prise de décision par une entité unique. (Les questions liées à la décision collective relèvent de la théorie du choix social.) La notion de décision intertemporelle découle de la prise en compte du facteur temps dans les problématiques reliant l'offre et la demande, les disponibilités et les contraintes. Ces problématiques sont celles qui découlent des combinaisons possibles entre les disponibilités et les décisions pouvant les impliquer.