Construction modulaireOn appelle construction modulaire une construction déterminée par un module (voir cette notion): une organisation de la construction de bâtiment ou de la construction navale (plus généralement la construction mécanique), consistant à assembler des éléments préfabriqués selon un gabarit de coordination standard (le module).
Treillis (assemblage)Un treillis, ou système triangulé, est un assemblage de barres verticales, horizontales et diagonales formant des triangles, de sorte que chaque barre subisse un effort acceptable, et que la déformation de l'ensemble soit modérée. Cette structure est devenue courante en construction à partir de la révolution industrielle, pour des ponts, fuselages d'avion En effet, un tel assemblage allie résistance, rigidité et légèreté, et permet d'utiliser des éléments normalisés (barres) ; par ailleurs, le treillis peut éventuellement être préassemblé.
Ingénierie des structuresL'ingénierie des structures est un domaine de l'ingénierie et plus particulièrement du génie civil, traitant de la stabilité des constructions (conception et de l'analyse des structures). Une structure est soumise à différentes actions, permanentes ou variables dans le temps, statiques ou dynamiques, de nature mécanique ou thermique, et sa conception vise à satisfaire certains critères vis-à-vis de ces actions : Sécurité : sa résistance, son équilibre et sa stabilité doivent être assurés avec une probabilité choisie ; Performance : son fonctionnement et le confort associés doivent être garantis pour une durée suffisante ; Durabilité : la dégradation de la structure dans le temps doit être limitée et maîtrisée pour satisfaire les deux premiers critères.
Forme modulaireEn mathématiques, une forme modulaire est une fonction analytique sur le demi-plan de Poincaré satisfaisant à une certaine sorte d'équation fonctionnelle et de condition de croissance. La théorie des formes modulaires est par conséquent dans la lignée de l'analyse complexe mais l'importance principale de la théorie tient dans ses connexions avec le théorème de modularité et la théorie des nombres.
Courbe modulaireEn théorie des nombres et en géométrie algébrique une courbe modulaire désigne la surface de Riemann, ou la courbe algébrique correspondante, construite comme quotient du demi-plan de Poincaré H sous l'action de certains sous-groupes Γ d'indice fini dans le groupe modulaire. La courbe obtenue est généralement notée Y(Γ). On appelle Γ le niveau de la courbe Y(Γ). Depuis Gorō Shimura, on sait que ces courbes admettent des équations à coefficients dans un corps cyclotomique, qui dépend du niveau Γ.
Palier (mécanique)vignette|210x210px|Représentation 3D d'un palier lisse. Les paliers sont des organes utilisés en construction mécanique pour supporter et guider, en rotation, des arbres de transmission. Suivant l’usage désiré, ces paliers peuvent être : lisses, où les arbres qui reposent sur des coussinets sont soumis au frottement de glissement entre les surfaces en contact ; à roulement, où le contact s’effectue par l’intermédiaire de billes, d'aiguilles ou de rouleaux contenus dans des cages.
Palier lisseUn palier lisse assure le guidage en rotation par glissement. Il est dépourvu d'éléments interposés, contrairement au roulement, dont le guidage est assuré par un ou plusieurs éléments roulants. Le terme anglais bearing désigne les deux types donc la confusion n'est pas rare dans les documents traduits. vignette|Exemple de palier lisse. Surface d'un arbre ou dans un alésage, ou pièce intercalée entre eux, permettant un glissement relatif l'un par rapport à l'autre avec un minimum d'usure et de frottement.
Groupe modulaireEn mathématiques, on appelle groupe modulaire le groupe PSL(2, Z), quotient du groupe spécial linéaire SL(2, Z) par son centre { Id, –Id }. Il s'identifie à l'image de SL(2, Z) dans le groupe de Lie On le note souvent Γ(1) ou simplement Γ. Ce nom provient de l'action à gauche et fidèle de Γ(1) par homographies sur le demi-plan de Poincaré H des nombres complexes de partie imaginaire strictement positive. Cette action n'est que la restriction de l'action de PGL(2, C) sur la droite projective complexe P(C) = C ∪ {∞} : la matrice agit sur P(C) par la transformation de Möbius qui en envoie z sur .
Reversible process (thermodynamics)In thermodynamics, a reversible process is a process, involving a system and its surroundings, whose direction can be reversed by infinitesimal changes in some properties of the surroundings, such as pressure or temperature. Throughout an entire reversible process, the system is in thermodynamic equilibrium, both physical and chemical, and nearly in pressure and temperature equilibrium with its surroundings. This prevents unbalanced forces and acceleration of moving system boundaries, which in turn avoids friction and other dissipation.
Fluid bearingFluid bearings are bearings in which the load is supported by a thin layer of rapidly moving pressurized liquid or gas between the bearing surfaces. Since there is no contact between the moving parts, there is no sliding friction, allowing fluid bearings to have lower friction, wear and vibration than many other types of bearings. Thus, it is possible for some fluid bearings to have near-zero wear if operated correctly. They can be broadly classified into two types: fluid dynamic bearings (also known as hydrodynamic bearings) and hydrostatic bearings.