Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Polynôme de Gegenbauerthumb|right|320px|Tracé du polynôme de Gegenbauer C(x) pour n=10 et m=1 sur le plan complexe entre -2-2i et 2+2i En mathématiques, les polynômes de Gegenbauer ou polynômes ultrasphériques sont une classe de polynômes orthogonaux. Ils sont nommés ainsi en l'honneur de Leopold Gegenbauer (1849-1903). Ils sont obtenus à partir des séries hypergéométriques dans les cas où la série est en fait finie : où est la factorielle décroissante.
Censure cosmiqueEn astrophysique, le terme de censure cosmique (cosmic censorship en anglais) désigne une conjecture à propos de la nature des singularités dans l'espace-temps. Selon elle, il n'existe pas de processus physique donnant naissance à une singularité nue, c'est-à-dire une région de l'espace dont le champ gravitationnel prend des valeurs infinies et qui ne serait pas cachée derrière un horizon des événements. Le terme de « censure cosmique » est entre autres l'œuvre du mathématicien britannique Roger Penrose.
Polynôme associé de LegendreEn mathématiques, un polynôme associé de Legendre, noté , est une solution particulière de l'équation générale de Legendre : laquelle n'a de solution régulière que sur l'intervalle [–1, 1] et si –m ≤ l ≤ m avec l et m entiers. Elle se réduit à l'équation différentielle de Legendre si m = 0. Cette fonction est un polynôme si m est un entier pair. Toutefois, l’appellation de « polynôme », bien qu'incorrecte, est quand même conservée dans le cas où m est un entier impair.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Série de Fouriervignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Univers observableL'Univers observable est, en cosmologie, la partie visible de notre Univers. Il est donc une boule dont la limite est située à l'horizon cosmologique et dont la Terre constitue le centre. C'est ainsi une notion relative, d'autres observateurs situés ailleurs dans l'Univers n'ont pas la même boule observable, mais une similaire de même rayon.
Vide (astronomie)En astronomie, un vide est un espace dont la densité de matière est extrêmement faible situé entre des filaments galactiques reliant des superamas, les plus grandes structures de l'univers. Ces vides ont généralement un diamètre allant de 11 à 150 Mpc. Lorsque des vides prennent de telles dimensions, ils sont parfois appelés supervides. Les vides situés dans des régions à forte densité de matière sont plus petits que ceux situés dans des régions moins denses de l'univers.
Hubble (télescope spatial)(Hubble Space Telescope, en abrégé ou, rarement en français, TSH) est un télescope spatial conçu par la NASA avec une participation de l'Agence spatiale européenne, opérationnel depuis 1990. Son miroir de grande taille ( de diamètre), qui lui permet de restituer des images avec une résolution angulaire inférieure à , ainsi que sa capacité à observer à l'aide d'imageurs et de spectroscopes dans l'infrarouge proche et l'ultraviolet, lui permettent de surclasser, pour de nombreux types d'observation, les instruments au sol les plus puissants, handicapés par la présence de l'atmosphère terrestre.
Polynôme de JacobiEn mathématiques, les polynômes de Jacobi sont une classe de polynômes orthogonaux. Ils sont obtenus à partir des séries hypergéométriques dans les cas où la série est en fait finie : où est le symbole de Pochhammer pour la factorielle croissante, (Abramowitz & Stegun p561.) et ainsi, nous avons l'expression explicite pour laquelle la valeur finale est Ici, pour l'entier et est la fonction gamma usuelle, qui possède la propriété pour .