Educational assessmentEducational assessment or educational evaluation is the systematic process of documenting and using empirical data on the knowledge, skill, attitudes, aptitude and beliefs to refine programs and improve student learning. Assessment data can be obtained from directly examining student work to assess the achievement of learning outcomes or can be based on data from which one can make inferences about learning. Assessment is often used interchangeably with test, but not limited to tests.
Valeur absolue des écartsEn statistique, la déviation absolue moyenne (ou simplement déviation moyenne) d'un ensemble est la moyenne (ou valeur prévue) des déviations absolues par rapport à un point central d'une série statistique. C'est une statistique sommaire de dispersion ou de variabilité statistique, et elle peut être associée à toute mesure à une tendance centrale (moyenne, médiane, mode...). La déviation absolue d'un élément a d'un ensemble de données x par rapport à un réel est a – x.
Évaluation sommativeLes concepts d’évaluation sommative et formative ont été apportés par Michael Scriven en 1967. Selon Scriven, une évaluation formative devait permettre à un établissement scolaire d’estimer la capacité de ses programmes scolaires à atteindre leurs objectifs, de façon à guider les choix de l’école pour les améliorer progressivement, au contraire d’une évaluation sommative qui cherche à poser un jugement final sur les programmes : « marchent-ils » ou pas ? Et en conséquence, faut-il les maintenir, les étendre ou les abandonner ? Pour Scriven, toutes les techniques d’évaluation peuvent être sommatives, mais seules certaines sont formatives.
Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Catégorie dérivéeLa catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 41⁄2, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Bessel's correctionIn statistics, Bessel's correction is the use of n − 1 instead of n in the formula for the sample variance and sample standard deviation, where n is the number of observations in a sample. This method corrects the bias in the estimation of the population variance. It also partially corrects the bias in the estimation of the population standard deviation. However, the correction often increases the mean squared error in these estimations. This technique is named after Friedrich Bessel.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».