Modèle causal de Neyman-RubinLe modèle causal de Neyman-Rubin (ou modèle à résultats potentiels, en anglais potential outcome model) est un cadre de pensée permettant d'identifier statistiquement l'effet causal d'une variable sur une autre. La première version du modèle a été proposée par Jerzy Neyman en 1923 dans son mémoire de maîtrise. Le modèle a ensuite été généralisé par Donald Rubin dans un article intitulé « ». Le nom du modèle a été donné par Paul Holland dans un article de 1986 intitulé « ». Expérience naturelle Méthode des
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Coloration des arêtes d'un graphethumb|Coloration des arêtes du graphe de Desargues avec trois couleurs. En théorie des graphes et en algorithmique, une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. La figure ci-contre est un exemple de coloration d'arêtes correcte. On vérifie en effet qu'aucun sommet n'est commun à deux arêtes de même couleur. On remarquera qu'ici, il n'aurait pas été possible de colorer les arêtes du graphe avec seulement deux couleurs.
Temporal difference learningLe Temporal Difference (TD) learning est une classe d'algorithmes d'apprentissage par renforcement sans modèle. Ces algorithmes échantillonnent l'environnement de manière aléatoire à la manière des méthodes de Monte Carlo. Ils mettent à jour la politique (i.e. les actions à prendre dans chaque état) en se basant sur les estimations actuelles, comme les méthodes de programmation dynamique. Les méthodes TD ont un lien avec les modèles TD dans l'apprentissage animal. vignette|151x151px|Diagramme backup.
Causal graphIn statistics, econometrics, epidemiology, genetics and related disciplines, causal graphs (also known as path diagrams, causal Bayesian networks or DAGs) are probabilistic graphical models used to encode assumptions about the data-generating process. Causal graphs can be used for communication and for inference. They are complementary to other forms of causal reasoning, for instance using causal equality notation. As communication devices, the graphs provide formal and transparent representation of the causal assumptions that researchers may wish to convey and defend.
Meta-learning (computer science)Meta learning is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing learning algorithms or to learn (induce) the learning algorithm itself, hence the alternative term learning to learn.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Explainable artificial intelligenceExplainable AI (XAI), also known as Interpretable AI, or Explainable Machine Learning (XML), either refers to an AI system over which it is possible for humans to retain intellectual oversight, or to the methods to achieve this. The main focus is usually on the reasoning behind the decisions or predictions made by the AI which are made more understandable and transparent. XAI counters the "black box" tendency of machine learning, where even the AI's designers cannot explain why it arrived at a specific decision.
Transformeurvignette|Schéma représentant l'architecture générale d'un transformeur. Un transformeur (ou modèle auto-attentif) est un modèle d'apprentissage profond introduit en 2017, utilisé principalement dans le domaine du traitement automatique des langues (TAL). Dès 2020, les transformeurs commencent aussi à trouver une application en matière de vision par ordinateur par la création des vision transformers (ViT).
Causal reasoningCausal reasoning is the process of identifying causality: the relationship between a cause and its effect. The study of causality extends from ancient philosophy to contemporary neuropsychology; assumptions about the nature of causality may be shown to be functions of a previous event preceding a later one. The first known protoscientific study of cause and effect occurred in Aristotle's Physics. Causal inference is an example of causal reasoning. Causal relationships may be understood as a transfer of force.