Système de systèmesUn système de systèmes est un système constitué de systèmes constituants hétérogènes. Un système de système a des capacités plus grandes que la somme des fonctions de ses systèmes constituants. Un système de système se caractérise par: Une indépendance opérationnelle de ses systèmes constituants Une indépendance managériale de ses systèmes Une distribution géographique marquée de ses systèmes constituants Un processus de développement incrémental La présence de comportements émergeant Un système de contrôle
Addition de MichaelL'addition de Michael ou réaction de Michael est une réaction qui permet la création de liaisons carbone-carbone, voire de liaisons carbone-soufre. Il s'agit de l'addition nucléophile d'un carbanion sur un composé carbonylé α,β-insaturé (aldéhyde, cétone et même ester α,β-insaturé, des nitriles et des amides α,β-insaturés pouvant aussi être utilisés). Elle appartient à la famille des additions nucléophiles conjuguées. Cette réaction doit son nom au chimiste américain Arthur Michael.
Addition nucléophilevignette|Schéma d'une addition nucléophile sur un carbonyle En chimie organique, une réaction nucléophile s'effectue entre un substrat quelconque et un réactif nucléophile. Une addition, en chimie, consiste en l'ajout d'un atome ou groupe d'atomes sur un substrat possédant une liaison insaturée. Un nucléophile est un atome ou une molécule qui présente une forte affinité pour les substances électrophiles.
Systems modelingSystems modeling or system modeling is the interdisciplinary study of the use of models to conceptualize and construct systems in business and IT development. A common type of systems modeling is function modeling, with specific techniques such as the Functional Flow Block Diagram and IDEF0. These models can be extended using functional decomposition, and can be linked to requirements models for further systems partition.
Primitive notionIn mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an axiomatic theory, relations between primitive notions are restricted by axioms. Some authors refer to the latter as "defining" primitive notions by one or more axioms, but this can be misleading. Formal theories cannot dispense with primitive notions, under pain of infinite regress (per the regress problem).
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).
Théorie naïve des ensemblesLes ensembles sont d'une importance fondamentale en mathématiques ; en fait, de manière formelle, la mécanique interne des mathématiques (nombres, relations, fonctions, etc.) peut se définir en termes d'ensembles. Il y a plusieurs façons de développer la théorie des ensembles et plusieurs théories des ensembles existent. Par théorie naïve des ensembles, on entend le plus souvent un développement informel d'une théorie des ensembles dans le langage usuel des mathématiques, mais fondée sur les axiomes de la théorie des ensembles de Zermelo ou de Zermelo-Fraenkel avec axiome du choix dans le style du livre Naive Set Theory de Paul Halmos.