Linear time-invariant systemIn system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (x ∗ h)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication).
Système invariantUn processus transformant un signal d’entrée en un signal de sortie (signaux électriques par exemple) est appelé système invariant (ou stationnaire) lorsqu’une translation du temps appliquée à l’entrée se retrouve à la sortie. Dans ce sens, la sortie ne dépend pas explicitement du temps. Si au signal d'entrée , un système invariant associe une sortie , alors quel que soit le décalage temporel appliqué à l'entrée, le système associe au signal la sortie décalée .
Distribution de DiracEn mathématiques, plus précisément en analyse, la distribution de Dirac, aussi appelée par abus de langage fonction δ de Dirac, introduite par Paul Dirac, peut être informellement considérée comme une fonction qui prend une « valeur » infinie en 0, et la valeur zéro partout ailleurs, et dont l'intégrale sur R est égale à 1. La représentation graphique de la « fonction » δ peut être assimilée à l'axe des abscisses en entier et le demi axe des ordonnées positives.
Filtre linéaireUn filtre linéaire est, en traitement du signal, un système qui applique un opérateur linéaire à un signal d'entrée. Les filtres linéaires sont rencontrés le plus souvent en électronique, mais il est possible d'en trouver en mécanique ou dans d'autres technologies. Une réponse impulsionnelle est la sortie d'un système dont l'entrée est une impulsion de Dirac(). Les filtres linéaires peuvent être divisés en deux groupes : les filtres à réponse impulsionnelle infinie et les filtres à réponse impulsionnelle finie.
Noyau de Dirichletthumb|upright=2|Tracé des premiers noyaux de Dirichlet. En mathématiques, et plus précisément en analyse, le n-ième noyau de Dirichlet — nommé ainsi en l'honneur du mathématicien allemand Johann Dirichlet — est le polynôme trigonométrique défini par : C'est donc une fonction 2π-périodique de classe . Elle vérifie de plus : si x n'est pas un multiple entier de 2π, alors ; si x est un multiple entier de 2π, alors . Le noyau de Dirichlet permet notamment d'améliorer la convergence des séries de Fourier.