Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Exponentielle d'une matriceEn mathématiques, et plus particulièrement en analyse, l'exponentielle d'une matrice est une fonction généralisant la fonction exponentielle aux matrices et aux endomorphismes par le calcul fonctionnel. Elle fait en particulier le pont entre un groupe de Lie et son algèbre de Lie. Pour n = 1, on retrouve la définition de l'exponentielle complexe. Sauf indication contraire, X, Y désignent des matrices n × n complexes (à coefficients complexes).
Work–life interfaceWork–life interface is the intersection of work and personal life. There are many aspects of one's personal life that can intersect with work, including family, leisure, and health. Work–life interface is bidirectional; for instance, work can interfere with private life, and private life can interfere with work. This interface can be adverse in nature (e.g., work–life conflict) or can be beneficial (e.g., work–life enrichment) in nature. Recent research has shown that the work–life interface has become more boundary-less, especially for technology-enabled workers.
Agrandissement et réductionEn géométrie, l’agrandissement et la réduction sont les deux cas de transformations géométriques d'une figure en multipliant ses dimensions par un nombre appelé rapport : ce nombre est supérieur à 1 dans le cas d’un agrandissement, inférieur dans le cas d’une réduction. La figure obtenue est ainsi semblable à l’ancienne, et si les deux apparaissent dans le même plan, elles s’obtiennent chacune par une homothétie sur la figure de l’autre. C’est le cas par exemple d’une configuration de Thalès.
Sous-espace de KrylovEn algèbre linéaire, le sous-espace de Krylov d'ordre r associé à une matrice de taille et un vecteur b de dimension n est le sous-espace vectoriel linéaire engendré par les vecteurs images de b par les r premières puissances de A (à partir de ), c'est-à-dire Le concept porte le nom du mathématicien appliqué et ingénieur naval russe Alexei Krylov, qui a publié un article à ce sujet en 1931. Les vecteurs sont linéairement indépendants tant que , et . Ainsi, désigne la dimension maximale d'un sous-espace de Krylov.
Matrice de SylvesterEn algèbre linéaire, la matrice de Sylvester de deux polynômes apporte des informations d'ordre arithmétique sur ces polynômes. Elle tient son nom de James Joseph Sylvester. Elle sert à la définition du résultant de deux polynômes. Soient p et q deux polynômes non nuls, de degrés respectifs m et n La matrice de Sylvester associée à p et q est la matrice carrée définie ainsi : la première ligne est formée des coefficients de p, suivis de zéros la seconde ligne s'obtient à partir de la première par permutation circulaire vers la droite ; les n – 2 lignes suivantes s'obtiennent en répétant la même opération ; la ligne n + 1 est formée des coefficients de q, suivis de zéros les m – 1 lignes suivantes sont formées par des permutations circulaires.
Matrice d'une application linéaireEn algèbre linéaire, la matrice d'une application linéaire est une matrice de scalaires qui permet de représenter une application linéaire entre deux espaces vectoriels de dimensions finies, étant donné le choix d'une base pour chacun d'eux. Soient : E et F deux espaces vectoriels sur un corps commutatif K, de dimensions respectives n et m ; B = (e, ... , e) une base de E, C une base de F ; φ une application de E dans F.
Déterminant (mathématiques)vignette|L'aire du parallélogramme est la valeur absolue du déterminant de la matrice formée par les vecteurs correspondants aux côtés du parallélogramme. En mathématiques, le déterminant est une valeur qu'on peut associer aux matrices ou aux applications linéaires en dimension finie. Sur les exemples les plus simples, ceux de la géométrie euclidienne en dimension 2 ou 3, il s'interprète en termes d'aires ou de volumes, et son signe est relié à la notion d'orientation.
Analytic function of a matrixIn mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix, which is involved in the closed-form solution of systems of linear differential equations. There are several techniques for lifting a real function to a square matrix function such that interesting properties are maintained. All of the following techniques yield the same matrix function, but the domains on which the function is defined may differ.