Réseau neuronal résidueldroite|vignette| Forme canonique d'un réseau neuronal résiduel. Une couche l − 1 est ignoré sur l'activation de l − 2. Un réseau neuronal résiduel ( ResNet ) est un réseau neuronal artificiel (ANN). Il s'agit d'une variante du HighwayNet , le premier réseau neuronal à action directe très profond avec des centaines de couches, beaucoup plus profond que les réseaux neuronaux précédents. Les sauts de connexion ou "raccourcis" sont utilisés pour passer par-dessus certaines couches ( les HighwayNets peuvent également avoir des poids pour les saut eux-mêmes, grâce à une matrice de poids supplémentaire pour leurs portes).
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Big dataLe big data ( « grosses données » en anglais), les mégadonnées ou les données massives, désigne les ressources d’informations dont les caractéristiques en termes de volume, de vélocité et de variété imposent l’utilisation de technologies et de méthodes analytiques particulières pour créer de la valeur, et qui dépassent en général les capacités d'une seule et unique machine et nécessitent des traitements parallélisés. L’explosion quantitative (et souvent redondante) des données numériques permet une nouvelle approche pour analyser le monde.
Analyse d'imageL'analyse d'image est la reconnaissance des éléments et des informations contenus dans une . Elle peut être automatisée lorsque l'image est enregistrée sous forme numérique, au moyen d'outils informatiques. Les tâches relevant de l'analyse d'image sont multiples, depuis la lecture de codes-barres, jusqu'à la reconnaissance faciale. L'analyse d'image intervient également dans le domaine de l'art et du graphisme, pour l'interprétation des compositions et signifiants.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Centre de donnéesvignette|Centre de traitement de données. Un centre de données (en anglais data center ou data centre), ou centre informatique est un lieu (et un service) où sont regroupés les équipements constituants d'un système d'information (ordinateurs centraux, serveurs, baies de stockage, équipements réseaux et de télécommunications). Ce regroupement permet de faciliter la sécurisation, la gestion (notamment l'exécution de calculs et le refroidissement) et la maintenance des équipements et des données stockées.
Caractéristique d'EulerEn mathématiques, et plus précisément en géométrie et en topologie algébrique, la caractéristique d'Euler — ou d'Euler-Poincaré — est un invariant numérique, un nombre qui décrit un aspect d'une forme d'un espace topologique ou de la structure de cet espace. Elle est communément notée χ. La caractéristique d'Euler fut définie à l'origine pour les polyèdres et fut utilisée pour démontrer divers théorèmes les concernant, incluant la classification des solides de Platon.
IdentifiantUn identifiant est une sorte de nom qui sert à identifier un objet précis dans un ensemble d'objets ; ou plus largement toute suite de caractères qui joue ce rôle-là. En principe, un identifiant devrait être unique pour chaque objet. En pratique (comme pour les noms de personnes ou de lieux) ce n'est pas toujours le cas, sauf s'il s'agit d'un ensemble d'identifiants défini par une norme technique. Un identifiant de métadonnée est un signe, une étiquette ou un jeton indépendant du langage, qui identifie de manière unique un objet au sein d'un schéma d'identification.
Entrepôt de donnéesvignette|redresse=1.5|Vue d'ensemble d'une architecture entrepôt de données. Le terme entrepôt de données ou EDD (ou base de données décisionnelle ; en anglais, data warehouse ou DWH) désigne une base de données utilisée pour collecter, ordonner, journaliser et stocker des informations provenant de base de données opérationnelles et fournir ainsi un socle à l'aide à la décision en entreprise. Un entrepôt de données est une base de données regroupant une partie ou l'ensemble des données fonctionnelles d'une entreprise.