Estimateur (statistique)En statistique, un estimateur est une fonction permettant d'estimer un moment d'une loi de probabilité (comme son espérance ou sa variance). Il peut par exemple servir à estimer certaines caractéristiques d'une population totale à partir de données obtenues sur un échantillon comme lors d'un sondage. La définition et l'utilisation de tels estimateurs constitue la statistique inférentielle. La qualité des estimateurs s'exprime par leur convergence, leur biais, leur efficacité et leur robustesse.
Paramètre d'échellevignette|Animation de la fonction de densité d'une loi normale (forme de cloche). L'écart-type est un paramètre d'échelle. En l'augmentant, on étale la distribution. En le diminuant, on la concentre. En théorie des probabilités et en statistiques, un paramètre d'échelle est un paramètre qui régit l'aplatissement d'une famille paramétrique de lois de probabilités. Il s'agit principalement d'un facteur multiplicatif. Si une famille de densités de probabilité, dépendant du paramètre θ est de la forme où f est une densité, alors θ est bien un paramètre d'échelle.
Variational Bayesian methodsVariational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables".
Statistique bayésienneLa statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.
Inférence causaleL'inférence causale est le processus par lequel on peut établir une relation de causalité entre un élément et ses effets. C'est un champ de recherche à la croisée des statistiques, de l'économétrie, de l'épidémiologie, de la méthodologie politique et de l'intelligence artificielle. En 1920, Sewall Wright développe la première path analysis. Cette analyse graphique des relations de causalité entre les variables constitue selon Judea Pearl un travail pionnier dans l'inférence causale.
Statistique (indicateur)Une statistique est, au premier abord, le résultat d'une suite d'opérations appliquées à un ensemble de nombres appelé échantillon. D'une façon générale, c'est le résultat de l'application d'une méthode statistique à un ensemble de données. Dans le calcul de la moyenne arithmétique, par exemple, l'algorithme consiste à calculer la somme de toutes les valeurs des données et à diviser par le nombre de données. La moyenne est ainsi une statistique.
Processus ponctuelEn probabilité et statistique, un processus ponctuel est un type particulier de processus stochastique pour lequel une réalisation est un ensemble de points isolés du temps et/ou de l'espace. Par exemple, la position des arbres dans une forêt peut être modélisée comme la réalisation d'un processus ponctuel. Les processus ponctuels sont des objets très étudiés en probabilité et en statistique pour représenter et analyser des données spatialisées qui interviennent dans une multitude de domaines telle que l'écologie, l'astronomie, l'épidémiologie, la géographie, la sismologie, les télécommunications, la science des matériaux et beaucoup d'autres.
Processus de Poissonvignette|Schéma expliquant le processus de Poisson Un processus de Poisson, nommé d'après le mathématicien français Siméon Denis Poisson et la loi du même nom, est un processus de comptage classique dont l'équivalent discret est la somme d'un processus de Bernoulli. C'est le plus simple et le plus utilisé des processus modélisant une . C'est un processus de Markov, et même le plus simple des processus de naissance et de mort (ici un processus de naissance pur).
Analyse des réseaux sociauxL'analyse des réseaux sociaux est une approche issue de la sociologie, qui a recours à la théorie des réseaux afin d'étudier les interactions sociales, en termes de réseau. La théorie des réseaux sociaux conçoit les interactions sociales en termes de nœuds et liens. Les nœuds sont habituellement les acteurs sociaux dans le réseau, mais ils peuvent aussi représenter des institutions, et les liens sont les interactions ou les relations entre ces nœuds.
Inégalité de ChernoffEn théorie des probabilités, l'inégalité de Chernoff permet de majorer la queue d'une loi de probabilité, c'est-à-dire qu'elle donne une valeur maximale de la probabilité qu'une variable aléatoire dépasse une valeur fixée. On parle également de borne de Chernoff. Elle est nommée ainsi en l'honneur du mathématicien Herman Chernoff. Elle est comparable à l'inégalité de Markov mais donne une borne exponentielle. Il existe de nombreux énoncés, et de nombreux cas particuliers.