Indices de Miller et indices de directionLes indices de Miller ou de Miller-Bravais sont une manière de désigner l'orientation des plans cristallins dans un cristal. On utilise des indices similaires pour désigner les directions dans un cristal, les indices de direction. Un cristal est un empilement ordonné d'atomes, d'ions ou de molécules, appelés ci-après « motifs ». La périodicité du motif est exprimée par un réseau constitué de nœuds qui représentent les sommets de la maille. Les arêtes de la maille élémentaire définissent les vecteurs de la base.
Electron crystallographyElectron crystallography is a method to determine the arrangement of atoms in solids using a transmission electron microscope (TEM). It can involve the use of high-resolution transmission electron microscopy images, electron diffraction patterns including convergent-beam electron diffraction or combinations of these. It has been successful in determining some bulk structures, and also surface structures. Two related methods are low-energy electron diffraction which has solved the structure of many surfaces, and reflection high-energy electron diffraction which is used to monitor surfaces often during growth.
Réflexion (mathématiques)En mathématiques, une réflexion ou symétrie axiale du plan euclidien est une symétrie orthogonale par rapport à une droite (droite vectorielle s'il s'agit d'un plan vectoriel euclidien). Elle constitue alors une symétrie axiale orthogonale. Plus généralement, dans un espace euclidien quelconque, une réflexion est une symétrie orthogonale par rapport à un hyperplan, c'est-à-dire à un sous-espace de codimension 1. En dimension 3, il s'agit donc d'une symétrie orthogonale par rapport à un plan.
Longueur d'un moduleLa longueur d'un module M sur un anneau A est un entier naturel ou l'infini. Elle généralise d'une certaine manière la notion de dimension d'un espace vectoriel sur un corps. Les modules de longueur finie ont beaucoup de particularités généralisant celles des espaces vectoriels de dimension finie. Les modules simples sont les modules M non nuls qui n'ont pas d'autres sous-modules que {0} et M. Par exemple, un espace vectoriel est simple en tant que module si et seulement si c'est une droite vectorielle.
Quaternions et rotation dans l'espaceLes quaternions unitaires fournissent une notation mathématique commode pour représenter l'orientation et la rotation d'objets en trois dimensions. Comparés aux angles d'Euler, ils sont plus simples à composer et évitent le problème du blocage de cardan. Comparés aux matrices de rotations, ils sont plus stables numériquement et peuvent se révéler plus efficaces. Les quaternions ont été adoptés dans des applications en infographie, robotique, navigation, dynamique moléculaire et en mécanique spatiale des satellites.
Intersection numberIn mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem. The intersection number is obvious in certain cases, such as the intersection of the x- and y-axes in a plane, which should be one.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Matrice de SylvesterEn algèbre linéaire, la matrice de Sylvester de deux polynômes apporte des informations d'ordre arithmétique sur ces polynômes. Elle tient son nom de James Joseph Sylvester. Elle sert à la définition du résultant de deux polynômes. Soient p et q deux polynômes non nuls, de degrés respectifs m et n La matrice de Sylvester associée à p et q est la matrice carrée définie ainsi : la première ligne est formée des coefficients de p, suivis de zéros la seconde ligne s'obtient à partir de la première par permutation circulaire vers la droite ; les n – 2 lignes suivantes s'obtiennent en répétant la même opération ; la ligne n + 1 est formée des coefficients de q, suivis de zéros les m – 1 lignes suivantes sont formées par des permutations circulaires.
Groupe de symétrieLe groupe de symétrie, ou groupe des isométries, d'un objet (, signal, etc.) est le groupe de toutes les isométries sous lesquelles cet objet est globalement invariant, l'opération de ce groupe étant la composition. C'est un sous-groupe du groupe euclidien, qui est le groupe des isométries de l'espace affine euclidien ambiant. (Si cela n'est pas indiqué, nous considérons ici les groupes de symétrie en géométrie euclidienne, mais le concept peut aussi être étudié dans des contextes plus larges, voir ci-dessous.
SymétrieLa symétrie est une propriété d'un système : c'est lorsque deux parties sont semblables. L'exemple le plus connu est la symétrie en géométrie. De manière générale, un système est symétrique quand on peut permuter ses éléments en laissant sa forme inchangée. Le concept d'automorphisme permet de préciser cette définition. Un papillon, par exemple, est symétrique parce qu'on peut permuter tous les points de la moitié gauche de son corps avec tous les points de la moitié droite sans que son apparence soit modifiée.