Injection (mathématiques)Une application f est dite injective ou est une injection si tout élément de son ensemble d'arrivée a au plus un antécédent par f, ce qui revient à dire que deux éléments distincts de son ensemble de départ ne peuvent pas avoir la même par f. Lorsque les ensembles de départ et d'arrivée de f sont tous les deux égaux à la droite réelle R, f est injective si et seulement si son graphe intersecte toute droite horizontale en au plus un point. Si une application injective est aussi surjective, elle est dite bijective.
Polynomial greatest common divisorIn algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant.
Groupe divisibleEn mathématiques, et plus particulièrement en théorie des groupes, un groupe abélien divisible est un groupe abélien G tel que, pour tout nombre naturel n ≥ 1, on ait (en notation additive) G = nG. Ceci revient à dire que pour tout élément x de G et tout nombre naturel n ≥ 1, il existe au moins un élément y de G tel que x = ny. On peut étendre cette définition aux groupes non abéliens, un groupe divisible étant un groupe dans lequel (en notation multiplicative) tout élément est n-ième puissance, quel que soit l'entier naturel n ≥ 1.
Identités de NewtonEn mathématiques, et plus particulièrement en algèbre, les identités de Newton (connues également sous le nom de formules de Newton-Girard) sont des relations entre deux types de polynômes symétriques, les polynômes symétriques élémentaires, et les sommes de Newton, c'est-à-dire les sommes de puissances des indéterminées. Évaluées aux racines d'un polynôme P à une variable, ces identités permettent d'exprimer les sommes des k-ièmes puissances de toutes les racines de P (comptées avec leur multiplicité) en fonction des coefficients de P, sans qu'il soit nécessaire de déterminer ces racines.
Produit direct (groupes)En mathématiques, et plus particulièrement en théorie des groupes, le produit direct d'une famille de groupes est une structure de groupe qui se définit naturellement sur le produit cartésien des ensembles sous-jacents à ces groupes. Soient et deux groupes. Désignons par leur produit cartésien (ou, plus exactement, le produit cartésien de leurs ensembles sous-jacents). Il est naturel de définir sur une loi de composition composante par composante : le produit apparaissant dans le second membre étant calculé dans et le produit dans .
GraphonEn théorie des graphes et en statistique, un graphon (aussi connu sous le terme limite de graphes) est une fonction symétrique mesurable , qui joue un rôle important dans l'étude des graphes denses. Les graphons sont à la fois une notion naturelle de limite d'une suite de graphes denses, et sont aussi les objets fondamentaux dans la définition des modèles de graphes aléatoires échangeables Les graphons sont liés aux graphes denses : d'une part, les modèles de graphes aléatoires définis par les graphons donnent lieu à des graphes denses presque sûrement.
Quartic functionIn algebra, a quartic function is a function of the form where a is nonzero, which is defined by a polynomial of degree four, called a quartic polynomial. A quartic equation, or equation of the fourth degree, is an equation that equates a quartic polynomial to zero, of the form where a ≠ 0. The derivative of a quartic function is a cubic function.
Injective objectIn mathematics, especially in the field of , the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of . The dual notion is that of a projective object. An in a is said to be injective if for every monomorphism and every morphism there exists a morphism extending to , i.e. such that . That is, every morphism factors through every monomorphism . The morphism in the above definition is not required to be uniquely determined by and .