Spectroscopie infrarougethumb|Un spectromètre infrarouge. La spectroscopie infrarouge (parfois désignée comme spectroscopie IR) est une classe de spectroscopie qui traite de la région infrarouge du spectre électromagnétique. Elle recouvre une large gamme de techniques, la plus commune étant un type de spectroscopie d'absorption. Comme pour toutes les techniques de spectroscopie, elle peut être employée pour l'identification de composés ou pour déterminer la composition d'un échantillon.
Groupe ponctuel de symétrieEn géométrie, un groupe ponctuel de symétrie est un sous-groupe d'un groupe orthogonal : il est composé d'isométries, c'est-à-dire d'applications linéaires laissant invariants les distances et les angles. Le groupe ponctuel de symétrie d'une molécule est constitué des isométries qui laissent la molécule, en tant que forme géométrique, invariante. thumb|Figure 1 : exemple de rotation En cristallographie, un groupe ponctuel contient les opérations de symétrie qui laissent invariants la morphologie d’un cristal et ses propriétés physiques (la symétrie de la structure atomique d’un cristal est décrite par les groupes d’espace).
Spectroscopie dans l'infrarouge procheLa spectroscopie dans l'infrarouge proche (ou dans le proche infrarouge, SPIR), souvent désignée par son sigle anglais NIRS (near-infrared spectroscopy), est une technique de mesure et d'analyse des spectres de réflexion dans la gamme de longueurs d'onde (l'infrarouge proche). Cette technique est largement utilisée dans les domaines de la chimie (polymères, pétrochimie, industrie pharmaceutique), de l’alimentation, de l’agriculture ainsi qu'en planétologie. À ces longueurs d’onde, les liaisons chimiques qui peuvent être analysées sont C-H, O-H et N-H.
InfrarougeLe rayonnement infrarouge (IR) est un rayonnement électromagnétique de longueur d'onde supérieure à celle du spectre visible mais plus courte que celle des micro-ondes ou du domaine térahertz. Cette gamme de longueurs d'onde dans le vide de à se divise en infrarouge proche, au sens de proche du spectre visible, de environ, infrarouge moyen, qui s'étend jusqu'à , et infrarouge lointain. Les limites de ces domaines peuvent varier quelque peu d'un auteur à l'autre.
Spectroscopie infrarouge à transformée de FourierLa spectroscopie infrarouge à transformée de Fourier ou spectroscopie IRTF (ou encore FTIR, de l'anglais Fourier Transform InfraRed spectroscopy) est une technique utilisée pour obtenir le spectre d'absorption, d'émission, la photoconductivité ou la diffusion Raman dans l'infrarouge d'un échantillon solide, liquide ou gazeux. Un spectromètre FTIR permet de collecter simultanément les données spectrales sur un spectre large.
Open sourceOpen source is source code that is made freely available for possible modification and redistribution. Products include permission to use the source code, design documents, or content of the product. The open-source model is a decentralized software development model that encourages open collaboration. A main principle of open-source software development is peer production, with products such as source code, blueprints, and documentation freely available to the public.
Symétrie centralethumb|upright=0.7|Symétrie centrale plane dans une carte à jouer : sur la carte figure le roi de cœur et son symétrique par rapport au centre de cette dernière. En géométrie, une symétrie centrale est une transformation d'un espace affine. Elle se réalise à partir d'un point fixe noté Ω appelé centre de symétrie. Elle transforme tout point M en un point M' tel que le point Ω soit le milieu du segment [MM']. En termes de vecteurs, cela se traduit par : Comme toute symétrie, c'est une involution, c'est-à-dire qu'on retrouve le point ou la figure de départ si on l'applique deux fois.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Point groups in three dimensionsIn geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries. Symmetry groups of geometric objects are isometry groups. Accordingly, analysis of isometry groups is analysis of possible symmetries.
Point groups in four dimensionsIn geometry, a point group in four dimensions is an isometry group in four dimensions that leaves the origin fixed, or correspondingly, an isometry group of a 3-sphere. 1889 Édouard Goursat, Sur les substitutions orthogonales et les divisions régulières de l'espace, Annales Scientifiques de l'École Normale Supérieure, Sér. 3, 6, (pp. 9–102, pp. 80–81 tetrahedra), Goursat tetrahedron 1951, A. C. Hurley, Finite rotation groups and crystal classes in four dimensions, Proceedings of the Cambridge Philosophical Society, vol.