Champ magnétiqueEn physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Moment magnétiqueEn physique, le moment magnétique est une grandeur vectorielle qui permet de caractériser l'intensité d'une source magnétique. Cette source peut être un courant électrique, ou bien un objet aimanté. L'aimantation est la distribution spatiale du moment magnétique. Le moment magnétique d'un corps se manifeste par la tendance qu'a ce corps à s'aligner dans le sens d'un champ magnétique, c'est par exemple le cas de l'aiguille d'une boussole : le moment que subit l'objet est égal au produit vectoriel de son moment magnétique par le champ magnétique dans lequel il est placé.
Monopôle magnétiqueUn monopôle magnétique est une particule hypothétique qui porterait une masse (ou charge) magnétique ponctuelle, au contraire des aimants habituels qui possèdent deux pôles magnétiques opposés. L'existence de monopôles magnétiques est exclue par l'électromagnétisme classique et par la théorie de la relativité, mais en 1931 Paul Dirac en a démontré l'existence théorique dans le cadre de la physique quantique. En septembre 2009, des chercheurs ont observé des quasiparticules artificielles présentant les propriétés du monopôle magnétique.
Transition de phasevignette|droite|Noms exclusifs des transitions de phase en thermodynamique. En physique, une transition de phase est la transformation physique d'un système d'une phase vers une autre, induite par la variation d'un paramètre de contrôle externe (température, champ magnétique...). Une telle transition se produit lorsque ce paramètre externe atteint une valeur seuil (ou valeur « critique »). La transformation traduit généralement un changement des propriétés de symétrie du système.
Diagramme de phaseUn diagramme de phase, ou diagramme de phases, est une représentation graphique utilisée en thermodynamique, généralement à deux ou trois dimensions, représentant les domaines de l'état physique (ou phase) d'un système (corps pur ou mélange de corps purs), en fonction de variables, choisies pour faciliter la compréhension des phénomènes étudiés. Les diagrammes les plus simples concernent un corps pur avec pour variables la température et la pression ; les autres variables souvent utilisées sont l'enthalpie, l'entropie, le volume massique, ainsi que la concentration en masse ou en volume d'un des corps purs constituant un mélange.
Phase (thermodynamique)thumb|right|Un système composé d'eau et d'huile, à l'équilibre, est composé de deux phases distinctes (biphasique). En thermodynamique, on utilise la notion de phase pour distinguer les différents états possibles d'un système. Selon le contexte et les auteurs, le mot est utilisé pour désigner plusieurs choses, parfois de natures différentes, mais étroitement liées. Si un système thermodynamique est entièrement homogène, physiquement et chimiquement, on dit qu'il constitue une seule phase.
Champ magnétique terrestreLe champ magnétique terrestre, aussi appelé bouclier terrestre, est un champ magnétique présent dans un vaste espace autour de la Terre (de manière non uniforme du fait de son interaction avec le vent solaire) ainsi que dans la croûte et le manteau. Il a son origine dans le noyau externe, par un mécanisme de dynamo auto-excitée. Dynamo terrestre Selon les études de John Tarduno de l'université de Rochester (États-Unis), la Terre possédait déjà un champ magnétique il y a 3,45 milliards d'années.
Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Magnetic domainA magnetic domain is a region within a magnetic material in which the magnetization is in a uniform direction. This means that the individual magnetic moments of the atoms are aligned with one another and they point in the same direction. When cooled below a temperature called the Curie temperature, the magnetization of a piece of ferromagnetic material spontaneously divides into many small regions called magnetic domains. The magnetization within each domain points in a uniform direction, but the magnetization of different domains may point in different directions.
Champ électromagnétiqueUn champ électromagnétique ou Champ EM (en anglais, electromagnetic field ou EMF) est la représentation dans l'espace de la force électromagnétique qu'exercent des particules chargées. Concept important de l'électromagnétisme, ce champ représente l'ensemble des composantes de la force électromagnétique s'appliquant sur une particule chargée se déplaçant dans un référentiel galiléen. Une particule de charge q et de vecteur vitesse subit une force qui s'exprime par : où est le champ électrique et est le champ magnétique.