Fonction objectifvignette|comparaison de certains substituts de la fonction de perte Le terme fonction objectif ou fonction économique, est utilisé en optimisation mathématique et en recherche opérationnelle pour désigner une fonction qui sert de critère pour déterminer la meilleure solution à un problème d'optimisation. Elle associe une valeur à une instance d'un problème d'optimisation. Le but du problème d'optimisation est alors de minimiser ou de maximiser cette fonction jusqu'à l'optimum, par différents procédés comme l'algorithme du simplexe.
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
Méthode de l'ellipsoïdeEn optimisation mathématique, la méthode de l'ellipsoïde est une méthode itérative utilisée pour minimiser des fonctions convexes. En informatique théorique, cette méthode est connue comme étant le premier algorithme de complexité polynomiale découvert pour résoudre les problèmes d'optimisation linéaire. L'algorithme construit une suite d'ellipsoïdes de plus en plus petits, qui enserrent à chaque étape le minimum de la fonction objectif.
Vitesse de convergence des suitesEn analyse numérique — une branche des mathématiques — on peut classer les suites convergentes en fonction de leur vitesse de convergence vers leur point limite. C'est une manière d'apprécier l'efficacité des algorithmes qui les génèrent. Les suites considérées ici sont convergentes sans être stationnaires (tous leurs termes sont même supposés différents du point limite). Si une suite est stationnaire, tous ses éléments sont égaux à partir d'un certain rang et il est alors normal de s'intéresser au nombre d'éléments différents du point limite.
Fonction de plusieurs variables complexesLa théorie des fonctions de plusieurs variables complexes est une branche des mathématiques traitant des fonctions à variables complexes. On définit de cette manière une fonction de Cn dans C, dont on peut noter les variables . L'analyse complexe correspond au cas . H. Cartan: Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. Hermann, Paris, 1961. C. Laurent-Thiébaut : Théorie des fonctions holomorphes de plusieurs variables. EDP Sciences, 1997. V.S.
Courbe convexeIn geometry, a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes. Examples of convex curves include the convex polygons, the boundaries of convex sets, and the graphs of convex functions. Important subclasses of convex curves include the closed convex curves (the boundaries of bounded convex sets), the smooth curves that are convex, and the strictly convex curves, which have the additional property that each supporting line passes through a unique point of the curve.
Plurisubharmonic functionIn mathematics, plurisubharmonic functions (sometimes abbreviated as psh, plsh, or plush functions) form an important class of functions used in complex analysis. On a Kähler manifold, plurisubharmonic functions form a subset of the subharmonic functions. However, unlike subharmonic functions (which are defined on a Riemannian manifold) plurisubharmonic functions can be defined in full generality on complex analytic spaces.
Espace localement convexeEn mathématiques, un espace localement convexe est un espace vectoriel topologique dont la topologie peut être définie à l'aide d'une famille de semi-normes. C'est une généralisation de la notion d'espace normé. Un espace vectoriel topologique E est dit localement convexe s'il vérifie l'une des deux propriétés équivalentes suivantes : il existe une famille de semi-normes telle que la topologie de E est initiale pour l'ensemble d'applications ; le vecteur nul possède une base de voisinages formée de convexes.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.