Système dynamique mesuréUn système dynamique mesuré est un objet mathématique, représentant un espace de phases muni d'une loi d'évolution, particulièrement étudié en théorie ergodique. Un système dynamique mesuré est la donnée d'un espace probabilisé et d'une application mesurable f : X → X. On exige que f préserve la mesure, ce qui veut dire que : Cette propriété très riche permet d'obtenir de puissants théorèmes. Par ailleurs, un théorème affirme qu'il existe, pour toute transformation continue X → X d'un espace topologique compact X, une mesure de probabilité, borélienne, préservant cette transformation.
Relation d'équivalenceEn mathématiques, une relation d'équivalence permet, dans un ensemble, de mettre en relation des éléments qui sont similaires par une certaine propriété. On pourra ainsi regrouper ces éléments par « paquets » d'éléments qui se ressemblent, définissant ainsi la notion de classe d'équivalence, pour enfin construire de nouveaux ensembles en « assimilant » les éléments similaires à un seul et même élément. On aboutit alors à la notion d'ensemble quotient. vignette|upright=1.5|Sur cet ensemble de huit exemplaires de livres, la relation « .
Théorie des cordes topologiquesEn physique théorique, la théorie des cordes topologiques est une version simplifiée de la théorie des supercordes où seule la topologie de la feuille d’univers (i.e. la surface générée par l’évolution temporelle de la corde) entre en compte dans le calcul de la . La théorie des cordes topologiques correspond au cas où la théorie conforme couplée à la gravité est un modèle sigma non linéaire en deux dimensions dont l’espace-cible est une variété de Calabi-Yau.
Topological quantum numberIn physics, a topological quantum number (also called topological charge) is any quantity, in a physical theory, that takes on only one of a discrete set of values, due to topological considerations. Most commonly, topological quantum numbers are topological invariants associated with topological defects or soliton-type solutions of some set of differential equations modeling a physical system, as the solitons themselves owe their stability to topological considerations.
DifféomorphismeEn mathématiques, un difféomorphisme est un isomorphisme dans la catégorie usuelle des variétés différentielles : c'est une bijection différentiable d'une variété dans une autre, dont la bijection réciproque est aussi différentiable. vignette|Image d'une grille à maille carrée par un difféomorphisme du carré dans lui-même. Soient : E et F deux espaces vectoriels normés réels de dimension finie ; U un ouvert de E, V un ouvert de F ; f une application de U dans V.
Complemented subspaceIn the branch of mathematics called functional analysis, a complemented subspace of a topological vector space is a vector subspace for which there exists some other vector subspace of called its (topological) complement in , such that is the direct sum in the category of topological vector spaces. Formally, topological direct sums strengthen the algebraic direct sum by requiring certain maps be continuous; the result retains many nice properties from the operation of direct sum in finite-dimensional vector spaces.
Consumer behaviourConsumer behaviour is the study of individuals, groups, or organisations and all the activities associated with the purchase, use and disposal of goods and services. Consumer behaviour consists of how the consumer's emotions, attitudes, and preferences affect buying behaviour. Consumer behaviour emerged in the 1940–1950s as a distinct sub-discipline of marketing, but has become an interdisciplinary social science that blends elements from psychology, sociology, social anthropology, anthropology, ethnography, ethnology, marketing, and economics (especially behavioural economics).
Topologievignette|Déformation continue d'une tasse avec une anse, en un tore (bouée). thumb|Un ruban de Möbius est une surface fermée dont le bord se réduit à un cercle. De tels objets sont des sujets étudiés par la topologie. La topologie est la branche des mathématiques qui étudie les propriétés d'objets géométriques préservées par déformation continue sans arrachage ni recollement, comme un élastique que l’on peut tendre sans le rompre.
Sciences comportementalesLe terme de sciences comportementales regroupe les disciplines qui explorent les activités et les interactions entre les organismes qui vivent dans la nature. Cela implique analyses systématiques et recherches sur le comportement animal et humain au moyen d'observations contrôlées et naturelles ainsi que des expérimentations scientifiques rigoureuses. Elles visent des conclusions légitimes à travers des formulations rigoureuses. Des exemples d'études comportementales se constituent à travers la psychologie, les sciences cognitives et l'anthropologie.
4-manifoldIn mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic).