Stratégie évolutivement stableEn théorie des jeux, en psychologie comportementale et en psychologie évolutionniste, une stratégie évolutivement stable ou SES (en anglais, evolutionarily stable strategy ou ESS) est un cas particulier d'équilibre de Nash tel que, dans une grande population de joueurs se rencontrant aléatoirement, plusieurs stratégies peuvent coexister chacune possédant une fréquence d'équilibre propre. Développé originellement en 1973 par John Maynard Smith et George R.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Forêt d'arbres décisionnelsvignette|Illustration du principe de construction d'une forêt aléatoire comme agrégation d'arbre aléatoires. En apprentissage automatique, les forêts d'arbres décisionnels (ou forêts aléatoires de l'anglais random forest classifier) forment une méthode d'apprentissage ensembliste. Ils ont été premièrement proposées par Ho en 1995 et ont été formellement proposées en 2001 par Leo Breiman et Adele Cutler. Cet algorithme combine les concepts de sous-espaces aléatoires et de bagging.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Arbre de jeuEn théorie des jeux, un arbre de jeu est un arbre (au sens de la théorie des graphes) dont les nœuds sont des positions dans un jeu et dont les arêtes sont des mouvements. L'arbre de jeu complet est l'arbre de jeu commençant à la position initiale et contenant tous les mouvements possibles depuis chaque position. vignette| Les deux premiers de l'arbre de jeu pour le tic-tac-toe. Le diagramme ci-contre montre comment coder dans une représentation arborescente le premier tour de jeu au tic-tac-toe : ce sont les deux premiers niveaux dans l'arborescence, la racine représentant la position initiale (une grille vide, en l'occurrence).
Jeuthumb|Les Joueurs de cartes de Paul Cézanne (1892-1895, Institut Courtauld). Le jeu est une activité, humaine ou animale, pratiquée pour se divertir. Propre aux mammifères, cette activité d'ordre psychique ou bien physique crée une dépense d'énergie décorrélée des intérêts essentiels immédiats autres que le plaisir. De ce fait, Johan Huizinga remarque que de très nombreuses activités humaines peuvent s'assimiler à des jeux. Mais la définition du jeu reste difficile à circonscrire, ce qui présente un intérêt pour la philosophie.
Arbre de décision (apprentissage)L’apprentissage par arbre de décision désigne une méthode basée sur l'utilisation d'un arbre de décision comme modèle prédictif. On l'utilise notamment en fouille de données et en apprentissage automatique. Dans ces structures d'arbre, les feuilles représentent les valeurs de la variable-cible et les embranchements correspondent à des combinaisons de variables d'entrée qui mènent à ces valeurs. En analyse de décision, un arbre de décision peut être utilisé pour représenter de manière explicite les décisions réalisées et les processus qui les amènent.
Procédure accusatoire et contradictoireLa procédure accusatoire et contradictoire est un système de justice dont les règles de procédures reposent sur les parties au litige. Ainsi, les avocats des parties plaignante et défenderesse sont responsables de présenter leur version des faits et de convaincre le juge ou le jury de la justesse de leur cause. Chaque procès est dirigé par un juge dont le rôle d'arbitrage le contraint à l'impartialité, à la différence d'une procédure inquisitoire pour laquelle le rôle du juge est très actif.
Classification naïve bayésiennevignette|Exemple de classification naïve bayésienne pour un ensemble de données dont le nombre augmente avec le temps. La classification naïve bayésienne est un type de classification bayésienne probabiliste simple basée sur le théorème de Bayes avec une forte indépendance (dite naïve) des hypothèses. Elle met en œuvre un classifieur bayésien naïf, ou classifieur naïf de Bayes, appartenant à la famille des classifieurs linéaires. Un terme plus approprié pour le modèle probabiliste sous-jacent pourrait être « modèle à caractéristiques statistiquement indépendantes ».
Algorithme évolutionnistevignette|redresse=1.2|Un algorithme évolutionnaire utilise itérativement des opérateurs de sélections (en bleu) et de variation (en jaune). i : initialisation, f(X) : évaluation, ? : critère d'arrêt, Se : sélection, Cr : croisement, Mu : mutation, Re : remplacement, X* : optimum. Les algorithmes évolutionnistes ou algorithmes évolutionnaires (evolutionary algorithms en anglais), sont une famille d'algorithmes dont le principe s'inspire de la théorie de l'évolution pour résoudre des problèmes divers.