Réseau de neurones (biologie)En neurosciences, un réseau de neurones correspond, schématiquement : Soit à un nombre restreint de différents neurones interconnectés, qui ont une fonction précise, comme le ganglion stomatogastrique qui contrôle l'activité des muscles de l'estomac des crustacés. Soit à un grand nombre de neurones similaires interconnectés, qui ont des fonctions plus cognitives, comme les réseaux corticaux qui permettent entre autres la catégorisation.
Neuronal ensembleA neuronal ensemble is a population of nervous system cells (or cultured neurons) involved in a particular neural computation. The concept of neuronal ensemble dates back to the work of Charles Sherrington who described the functioning of the CNS as the system of reflex arcs, each composed of interconnected excitatory and inhibitory neurons. In Sherrington's scheme, α-motoneurons are the final common path of a number of neural circuits of different complexity: motoneurons integrate a large number of inputs and send their final output to muscles.
Implant cérébralLes implants cérébraux, également appelés « BrainChips » ou « Brain implant » en anglais, sont des systèmes électroniques implantés dans le cerveau, afin de lire ou contrôler certains signaux cérébraux. Ils sont également connus sous le nom de « puce électronique cérébrale ». Les implants cérébraux sont des implants électroniques constitués d'électrodes ou de grilles d'électrodes, permettant de lire et contrôler des signaux cérébraux. Les électrodes peuvent être placées de façon très précises à l'aide de bras robotisés.
Physical neural networkA physical neural network is a type of artificial neural network in which an electrically adjustable material is used to emulate the function of a neural synapse or a higher-order (dendritic) neuron model. "Physical" neural network is used to emphasize the reliance on physical hardware used to emulate neurons as opposed to software-based approaches. More generally the term is applicable to other artificial neural networks in which a memristor or other electrically adjustable resistance material is used to emulate a neural synapse.
NeuroprostheticsNeuroprosthetics (also called neural prosthetics) is a discipline related to neuroscience and biomedical engineering concerned with developing neural prostheses. They are sometimes contrasted with a brain–computer interface, which connects the brain to a computer rather than a device meant to replace missing biological functionality. Neural prostheses are a series of devices that can substitute a motor, sensory or cognitive modality that might have been damaged as a result of an injury or a disease.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Filtre de Kalman d'ensembleLe filtre de Kalman d'ensemble (EnKF) est une variante du filtre de Kalman plus adaptée aux problèmes de très grande dimension comme les modèles géophysiques. Il a fait son apparition en 1994 dans un article de Geir Evensen. L'idée du filtre de Kalman d'ensemble est de représenter la loi recherchée par un échantillon de la variable d'état, et par suite la matrice de covariance du filtre de Kalman devient une matrice de covariance échantillonnée.
ÉlectroencéphalographieL'électroencéphalographie (EEG) est une méthode d'exploration cérébrale qui mesure l'activité électrique du cerveau par des électrodes placées sur le cuir chevelu souvent représentée sous la forme d'un tracé appelé électroencéphalogramme. Comparable à l'électrocardiogramme qui permet d'étudier le fonctionnement du cœur, l'EEG est un examen indolore et non invasif qui renseigne sur l'activité neurophysiologique du cerveau au cours du temps et en particulier du cortex cérébral soit dans un but diagnostique en neurologie, soit dans la recherche en neurosciences cognitives.
Filtre particulaireLes filtres particulaires, aussi connus sous le nom de méthodes de Monte-Carlo séquentielles, sont des techniques sophistiquées d'estimation de modèles fondées sur la simulation. Les filtres particulaires sont généralement utilisés pour estimer des réseaux bayésiens et constituent des méthodes 'en-ligne' analogues aux méthodes de Monte-Carlo par chaînes de Markov qui elles sont des méthodes 'hors-ligne' (donc a posteriori) et souvent similaires aux méthodes d'échantillonnage préférentiel.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.