Théorie des réseauxvignette|Graphe partiel de l'internet, basé sur les données de opte.org du 15 janvier 2005 (voir description de l'image pour plus de détails) La théorie des réseaux est l'étude de graphes en tant que représentation d'une relation symétrique ou asymétrique entre des objets discrets. Elle s'inscrit dans la théorie des graphes : un réseau peut alors être défini comme étant un graphe où les nœuds (sommets) ou les arêtes (ou « arcs », lorsque le graphe est orienté) ont des attributs, comme une étiquette (tag).
Topologie de réseauvignette Une topologie de réseau informatique correspond à l'architecture (physique, logicielle ou logique) de celui-ci, définissant les liaisons entre les équipements du réseau et une hiérarchie éventuelle entre eux. Elle peut définir la façon dont les équipements sont interconnectés et la représentation spatiale du réseau (topologie physique). Elle peut aussi définir la façon dont les données transitent dans les lignes de communication (topologies logiques).
Link layerIn computer networking, the link layer is the lowest layer in the Internet protocol suite, the networking architecture of the Internet. The link layer is the group of methods and communications protocols confined to the link that a host is physically connected to. The link is the physical and logical network component used to interconnect hosts or nodes in the network and a link protocol is a suite of methods and standards that operate only between adjacent network nodes of a network segment.
Réseau socialEn sciences humaines et sociales, l'expression réseau social désigne un agencement de liens entre des individus ou des organisations, constituant un groupement qui a un sens : la famille, les collègues, un groupe d'amis, une communauté, etc. L'anthropologue australien John Arundel Barnes a introduit l'expression en 1954. L'analyse des réseaux sociaux est devenue une spécialité universitaire dans le champ de la sociologie, se fondant sur la théorie des réseaux et l'usage des graphes.
Réseau de télécommunicationsvignette|Diagramme générique d'un réseau informatique "arborescent" ou "hiérarchique" Un réseau de télécommunications est un réseau d'arcs (liaisons de télécommunications) et de nœuds (commutateurs, routeurs...), mis en place de telle sorte que des messages puissent être transmis d'un bout à l'autre du réseau au travers des multiples liaisons. Les liaisons d'un réseau de télécommunication peuvent être réalisées grâce à des systèmes de transmission hiérarchiques.
Couche réseauLa couche de réseau est la troisième couche du modèle OSI. À ne pas confondre avec la couche « accès réseau » du modèle TCP/IP. thumb|Position de la couche réseau dans le modèle OSI et dans TCP-IP La couche réseau construit une voie de communication de bout à bout à partir de voies de communication avec ses voisins directs. Ses apports fonctionnels principaux sont donc: le routage détermination d'un chemin permettant de relier les 2 machines distantes; le relayage retransmission d'un PDU (Protocol Data Unit ou Unité de données de protocole) dont la destination n'est pas locale pour le rapprocher de sa destination finale.
Point stationnaire350px|thumb|right|Les points stationnaires de la fonction sont marquées par des ronds rouges. Dans ce cas, ce sont des extrema locaux. Les carrés bleus désignent les points d'inflexion. En analyse réelle, un point stationnaire ou point critique d'une fonction dérivable d'une variable réelle est un point de son graphe où sa dérivée s'annule. Visuellement, cela se traduit par un point où la fonction arrête de croître ou de décroître. Pour une fonction de plusieurs variables réelles, un point stationnaire (critique) est un point où le gradient s'annule.
Point d'inflexionthumb|Représentation graphique de la fonction x ↦ x montrant un point d'inflexion aux coordonnées (0, 0). thumb|Point d'inflexion de la fonction arc tangente. En mathématiques, et plus précisément en analyse et en géométrie différentielle, un point d'inflexion est un point où s'opère un changement de concavité d'une courbe plane. En un tel point, la tangente traverse la courbe. C'est pourquoi les points d'inflexion, quand on arrive à les déterminer explicitement, aident à bien représenter l'allure de la courbe.
Réseau complexeEn théorie des graphes, un réseau complexe est un réseau possédant une architecture et une topologie complexe et irrégulière. Comme tous les réseaux, ils sont composés de nœuds (ou sommets ou points) représentant des objets, interconnectés par des liens (ou arêtes ou lignes). Ces réseaux sont des représentations abstraites des relations principalement présentes dans la vie réelle dans une grande diversité de systèmes biologiques et technologiques.
Point singulier d'une courbeEn géométrie, un point singulier d'une courbe est un point en lequel la courbe ne peut être paramétrée par un plongement lisse. Les définitions plus précises du point singulier d'une courbe dépendent du type de courbe concernée. Les courbes algébriques planes peuvent être définies comme étant un ensemble de points qui satisfont une équation de la forme où est une fonction polynomiale. Supposons est développée sous la forme : et si l'origine (0, 0) est sur la courbe, alors .