Plasticité neuronalevignette|Effets schématiques de la neuroplasticité après entraînement Plasticité neuronale, neuroplasticité ou encore plasticité cérébrale sont des termes génériques qui décrivent les mécanismes par lesquels le cerveau est capable de se modifier lors des processus de neurogenèse dès la phase embryonnaire ou lors d'apprentissages. Elle s’exprime par la capacité du cerveau de créer, défaire ou réorganiser les réseaux de neurones et les connexions de ces neurones. Le cerveau est ainsi qualifié de « plastique » ou de « malléable ».
Extensible 3DExtensible 3D (X3D) est un format de fichier graphique et multimédia orienté 3D. Il a été créé par le consortium Web3D dans le but de succéder à VRML 2.0/97. Il fut normalisé par l'ISO en 2005. X3D s'appuie sur une structuration de type graphe de scène et peut être exprimé à l'aide de trois syntaxes différentes, à savoir la syntaxe VRML classique, une syntaxe basée sur XML, et enfin une version binaire.
Complexe différentielEn mathématiques, un complexe différentiel est un groupe abélien (voire un module), ou plus généralement un objet d'une catégorie abélienne, muni d'un endomorphisme de carré nul (appelé différentielle ou bord), c'est-à-dire dont l' est contenue dans le noyau. Cette condition permet de définir son homologie, qui constitue un invariant essentiel en topologie algébrique. Un complexe différentiel peut être gradué pour constituer un complexe de chaines ou de cochaines).
Comparison of parser generatorsThis is a list of notable lexer generators and parser generators for various language classes. Regular languages are a category of languages (sometimes termed Chomsky Type 3) which can be matched by a state machine (more specifically, by a deterministic finite automaton or a nondeterministic finite automaton) constructed from a regular expression.
Fonction impliciteEn mathématiques, une équation entre différentes variables où une variable n'est pas explicitée en fonction des autres est appelée une équation implicite. Une fonction implicite est une fonction qui se déduit implicitement d'une telle équation. Plus précisément si f est une fonction de E × F dans G, où E, F et G sont des espaces vectoriels normés ou plus simplement des intervalles de R, l'équation f(x,y) = 0 définit une fonction implicite si l'on peut exprimer une des variables en fonction de l'autre pour tous les couples (x,y) vérifiant l'équation.
Surface (géométrie analytique)En géométrie analytique, on représente les surfaces, c'est-à-dire les ensembles de points sur lequel il est localement possible de se repérer à l'aide de deux coordonnées réelles, par des relations entre les coordonnées de leurs points, qu'on appelle équations de la surface ou par des représentations paramétriques. Cet article étudie les propriétés des surfaces que cette approche (appelée souvent extrinsèque) permet de décrire. Pour des résultats plus approfondis, voir Géométrie différentielle des surfaces.
Homologie (mathématiques)En mathématiques, l'homologie est une manière générale d'associer une séquence d'objets algébriques tels que des groupes abéliens ou des modules à d'autres objets mathématiques tels que des espaces topologiques. Les groupes d'homologie ont été définis à l'origine dans la topologie algébrique. Des constructions similaires sont disponibles dans beaucoup d'autres contextes, tels que l'algèbre abstraite, les groupes, les algèbres de Lie, la théorie de Galois et la géométrie algébrique.
Space (mathematics)In mathematics, a space is a set (sometimes called a universe) with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself. A space consists of selected mathematical objects that are treated as points, and selected relationships between these points. The nature of the points can vary widely: for example, the points can be elements of a set, functions on another space, or subspaces of another space.
Parametric surfaceA parametric surface is a surface in the Euclidean space which is defined by a parametric equation with two parameters . Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed from a given parametrization.