Énergie (physique)En physique, l'énergie est une grandeur qui mesure la capacité d'un système à modifier un état, à produire un travail entraînant un mouvement, un rayonnement électromagnétique ou de la chaleur. Dans le Système international d'unités (SI), l'énergie s'exprime en joules et est de dimension . Le mot français vient du latin vulgaire energia, lui-même issu du grec ancien / enérgeia. Ce terme grec originel signifie « force en action », par opposition à / dýnamis signifiant « force en puissance » ; Aristote a utilisé ce terme , pour désigner la réalité effective en opposition à la réalité possible.
Développement asymptotiqueEn mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Méthode de LaplaceEn mathématiques, la méthode de Laplace, due à Pierre-Simon de Laplace, est une méthode pour l'évaluation numérique d'intégrales de la forme : où f est une fonction deux fois dérivable, M est un grand nombre réel et les bornes a et b peuvent éventuellement être infinies. vignette|Illustration de la méthode de Laplace : en noir, la fonction f(x), et en rouge, e avec M = 3 : on remarque que seule l'aire sous la courbe à intégrer près du maximum de (pointillés) est significative.
Équation de LaplaceEn analyse vectorielle, l'équation de Laplace est une équation aux dérivées partielles elliptique du second ordre, dont le nom est un hommage au physicien mathématicien Pierre-Simon de Laplace. Introduite pour les besoins de la mécanique newtonienne, l'équation de Laplace apparaît dans de nombreuses autres branches de la physique théorique : astronomie, électrostatique, mécanique des fluides, propagation de la chaleur, diffusion, mouvement brownien, mécanique quantique.
Length scaleIn physics, length scale is a particular length or distance determined with the precision of at most a few orders of magnitude. The concept of length scale is particularly important because physical phenomena of different length scales cannot affect each other and are said to decouple. The decoupling of different length scales makes it possible to have a self-consistent theory that only describes the relevant length scales for a given problem.
Champ de vecteurs hamiltonienEn géométrie différentielle et plus précisément en géométrie symplectique, dans l'étude des variétés symplectiques et des variétés de Poisson, un champ de vecteurs hamiltonien est un champ de vecteurs associé à une fonction réelle différentiable appelée hamiltonien de manière semblable au champ de vecteurs gradient en géométrie riemannienne. Cependant, une des différences fondamentales est que le hamiltonien est constant le long de ses courbes intégrales. Le nom vient du mathématicien et physicien William Rowan Hamilton.
Symétrie de rotationEn physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes.
Énergie cinétiqueEn physique, l' est l’énergie que possède un corps du fait de son mouvement dans un référentiel donné. L'énergie cinétique n'est pas un invariant galiléen, c'est-à-dire que sa valeur dépend du référentiel choisi. Son unité est le joule. L'énergie cinétique d'un point matériel dans un référentiel galiléen est égale au travaux des forces appliquées pour faire passer le point du repos à un mouvement. vignette|Les wagons des montagnes russes possèdent une énergie cinétique maximale en bas de leur parcours.
État quantiqueL'état d'un système physique décrit tous les aspects de ce système, dans le but de prévoir les résultats des expériences que l'on peut réaliser. Le fait que la mécanique quantique soit non déterministe entraîne une différence fondamentale par rapport à la description faite en mécanique classique : alors qu'en physique classique, l'état du système détermine de manière absolue les résultats de mesure des grandeurs physiques, une telle chose est impossible en physique quantique et la connaissance de l'état permet seulement de prévoir, de façon toutefois parfaitement reproductible, les probabilités respectives des différents résultats qui peuvent être obtenus à la suite de la réduction du paquet d'onde lors de la mesure d'un système quantique.
Pierre-Simon de LaplacePierre-Simon de Laplace ou Pierre-Simon Laplace, comte Laplace, puis de Laplace, né le à Beaumont-en-Auge et mort le à Paris, est un mathématicien, astronome, physicien et homme politique français. Laplace est l'un des principaux scientifiques de la période napoléonienne. Il a apporté des contributions fondamentales dans différents champs des mathématiques, de l'astronomie et de la théorie des probabilités. Il a été l'un des scientifiques les plus influents de son temps, notamment par son affirmation du déterminisme.