Symétrie de rotationEn physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes.
Brisure de symétrieUne symétrie est brisée quand un système ou les lois qui régissent son comportement ne cessent d'être invariants sous la transformation associée à cette symétrie. On observe des brisures de symétrie en physique (de l'échelle microscopique jusqu'à celle de l'Univers), en chimie (dont de nombreuses transitions de phase) et en biologie (par exemple l'asymétrie gauche-droite chez les Bilatériens). Une symétrie est explicitement brisée lorsque la loi qui régit son comportement est modifiée et n'est plus invariante dû à une cause externe.
Équation de MajoranaL'équation de Majorana est une similaire à l'équation de Dirac mais inclut la charge conjuguée Ψc d'un spineur Ψ. Cette équation porte le nom de l'italien Ettore Majorana, et dans les unités naturelles, elle s'exprime par écrit avec la notation de Feynman, où la charge conjuguée est définie par L'équation (1) peut s'exprimer autrement par Si une particule a un spineur de fonction d'onde Ψ qui satisfait l'équation de Majorana, alors la grandeur m de l'équation est appelé la masse de Majorana.
Grande unificationEn physique théorique, une théorie de grande unification, encore appelée GUT (pour Grand Unified Theory en anglais) est un modèle de la physique des particules dans lequel les trois interactions de jauge du modèle standard (électromagnétique, nucléaire faible et nucléaire forte) se fusionnent en une seule à hautes énergies. Cette interaction unifiée est caractérisée par une symétrie de jauge plus grande et donc plusieurs vecteurs de force, mais une seule constante de couplage unifiée.
Boson de GoldstoneLe boson de Goldstone, parfois appelé boson de Nambu-Goldstone, est un type de particule dont l’existence est impliquée par le phénomène de brisure spontanée de symétrie. D’abord prédit par Yoichiro Nambu puis théorisé par Jeffrey Goldstone, il fait aujourd’hui partie intégrante de la théorie quantique des champs. Il est de spin et masse nuls, bien qu’il puisse acquérir une masse dans certains cas en devenant ainsi un . La nécessité d'un boson de Goldstone dans le modèle standard vient du fait que les bosons de jauge étaient alors supposés ne pas avoir de masse.
Outer automorphism groupIn mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of Inn(G) with respect to outer automorphisms are then the elements of Out(G); this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups.
Chiral anomalyIn theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa. Such events are expected to be prohibited according to classical conservation laws, but it is known there must be ways they can be broken, because we have evidence of charge–parity non-conservation ("CP violation").
Gauge gravitation theoryIn quantum field theory, gauge gravitation theory is the effort to extend Yang–Mills theory, which provides a universal description of the fundamental interactions, to describe gravity. Gauge gravitation theory should not be confused with the similarly-named gauge theory gravity, which is a formulation of (classical) gravitation in the language of geometric algebra. Nor should it be confused with Kaluza–Klein theory, where the gauge fields are used to describe particle fields, but not gravity itself.
Automorphisme intérieurUn automorphisme intérieur est une notion mathématique utilisée en théorie des groupes. Soient G un groupe et g un élément de G. On appelle automorphisme intérieur associé à g, noté ιg, l'automorphisme de G défini par : Pour un groupe abélien, les automorphismes intérieurs sont triviaux. Plus généralement, l'ensemble des automorphismes intérieurs de G forme un sous-groupe normal du groupe des automorphismes de G, et ce sous-groupe est isomorphe au groupe quotient de G par son centre.
Groupe de symétrieLe groupe de symétrie, ou groupe des isométries, d'un objet (, signal, etc.) est le groupe de toutes les isométries sous lesquelles cet objet est globalement invariant, l'opération de ce groupe étant la composition. C'est un sous-groupe du groupe euclidien, qui est le groupe des isométries de l'espace affine euclidien ambiant. (Si cela n'est pas indiqué, nous considérons ici les groupes de symétrie en géométrie euclidienne, mais le concept peut aussi être étudié dans des contextes plus larges, voir ci-dessous.