Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Transition de phasevignette|droite|Noms exclusifs des transitions de phase en thermodynamique. En physique, une transition de phase est la transformation physique d'un système d'une phase vers une autre, induite par la variation d'un paramètre de contrôle externe (température, champ magnétique...). Une telle transition se produit lorsque ce paramètre externe atteint une valeur seuil (ou valeur « critique »). La transformation traduit généralement un changement des propriétés de symétrie du système.
Phase (thermodynamique)thumb|right|Un système composé d'eau et d'huile, à l'équilibre, est composé de deux phases distinctes (biphasique). En thermodynamique, on utilise la notion de phase pour distinguer les différents états possibles d'un système. Selon le contexte et les auteurs, le mot est utilisé pour désigner plusieurs choses, parfois de natures différentes, mais étroitement liées. Si un système thermodynamique est entièrement homogène, physiquement et chimiquement, on dit qu'il constitue une seule phase.
Diagramme de phaseUn diagramme de phase, ou diagramme de phases, est une représentation graphique utilisée en thermodynamique, généralement à deux ou trois dimensions, représentant les domaines de l'état physique (ou phase) d'un système (corps pur ou mélange de corps purs), en fonction de variables, choisies pour faciliter la compréhension des phénomènes étudiés. Les diagrammes les plus simples concernent un corps pur avec pour variables la température et la pression ; les autres variables souvent utilisées sont l'enthalpie, l'entropie, le volume massique, ainsi que la concentration en masse ou en volume d'un des corps purs constituant un mélange.
PolyamorphismeEn science des matériaux, le polyamorphisme est la possibilité pour une substance d'exister sous différentes formes amorphes. C'est l'analogue du polymorphisme des matériaux cristallins. Bien que l'arrangement atomique d'un matériau amorphe ne possède pas d'ordre à grande distance certaines propriétés de différents polyamorphes, telles que la densité, peuvent être différentes.
Sublimation (physique)En physique, la sublimation est le changement d'état d'un corps de l'état solide à l'état gazeux, directement (sans passer par l'état liquide). Le procédé inverse se nomme déposition ou condensation solide ou encore sublimation inverse. Tout solide stable est susceptible d'être sublimé si on le chauffe à une pression inférieure à celle de son point triple. La sublimation nécessite de fournir une énergie au corps qui la subit et est donc une transition de phase endothermique.
Matière amorpheUn matériau amorphe est une substance dans laquelle les atomes ne respectent aucun ordre à moyenne et grande distance (comparée au diamètre moléculaire), ce qui la distingue des composés cristallisés. La condition sur la distance est importante car la structure des matériaux amorphes présente très souvent un ordre à courte distance (quelques diamètres moléculaires). Les verres, les élastomères et les liquides sont des substances amorphes. En géosciences, le terme générique de minéraloïde est utilisé pour désigner la classe de ces matériaux non-cristallins.
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Optimisation quadratique successiveL'optimisation quadratique successive est un algorithme de résolution d'un problème d'optimisation non linéaire. Un tel problème consiste à déterminer des paramètres qui minimisent une fonction, tout en respectant des contraintes d'égalité et d'inégalité sur ces paramètres. On parle aussi de l'algorithme OQS pour Optimisation Quadratique Successive ou de l'algorithme SQP pour Sequential Quadratic Programming, en anglais. C'est un algorithme newtonien appliqué aux conditions d'optimalité du premier ordre du problème.
Constrained optimizationIn mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The objective function is either a cost function or energy function, which is to be minimized, or a reward function or utility function, which is to be maximized.