Neurone formelthumb|Représentation d'un neurone formel (ou logique). Un neurone formel, parfois appelé neurone de McCulloch-Pitts, est une représentation mathématique et informatique d'un neurone biologique. Le neurone formel possède généralement plusieurs entrées et une sortie qui correspondent respectivement aux dendrites et au cône d'émergence du neurone biologique (point de départ de l'axone). Les actions excitatrices et inhibitrices des synapses sont représentées, la plupart du temps, par des coefficients numériques (les poids synaptiques) associés aux entrées.
Nonprobability samplingSampling is the use of a subset of the population to represent the whole population or to inform about (social) processes that are meaningful beyond the particular cases, individuals or sites studied. Probability sampling, or random sampling, is a sampling technique in which the probability of getting any particular sample may be calculated. In cases where external validity is not of critical importance to the study's goals or purpose, researchers might prefer to use nonprobability sampling.
Key (music)In music theory, the key of a piece is the group of pitches, or scale, that forms the basis of a musical composition in Western classical music, art music, and pop music. Tonality (from "Tonic") or key: Music which uses the notes of a particular scale is said to be "in the key of" that scale or in the tonality of that scale. A particular key features a tonic note and its corresponding chords, also called a tonic or tonic chord, which provides a subjective sense of arrival and rest, and also has a unique relationship to the other pitches of the same key, their corresponding chords, and pitches and chords outside the key.
Épreuve de Bernoullivignette|Le pile ou face est un exemple d'épreuve de Bernouilli. En probabilité, une épreuve de Bernoulli de paramètre p (réel compris entre 0 et 1) est une expérience aléatoire (c'est-à-dire soumise au hasard) comportant deux issues, le succès ou l'échec. L'exemple typique est le lancer d'une pièce de monnaie possiblement pipée. On note alors p la probabilité d'obtenir pile (qui correspond disons à un succès) et 1-p d'obtenir face. Le réel p représente la probabilité d'un succès.
Processus de BernoulliEn probabilités et en statistiques, un processus de Bernoulli est un processus stochastique discret qui consiste en une suite de variables aléatoires indépendantes qui prennent leurs valeurs parmi deux symboles. Prosaïquement, un processus de Bernoulli consiste à tirer à pile ou face plusieurs fois de suite, éventuellement avec une pièce truquée. Une variable dans une séquence de ce type peut être qualifiée de variable de Bernoulli. Un processus de Bernoulli est une chaîne de Markov. Son arbre de probabilité est un arbre binaire.
Machine de Turing universellevignette|upright=1.5|Une machine de Turing quelconque M réalise un calcul à partir d'une entrée écrite sur son ruban. Une machine de Turing universelle U simule le calcul de M sur l'entrée de M à partir d'une description de M et de l'entrée de M écrits sur le ruban de U. En informatique, plus précisément en informatique théorique, une machine de Turing universelle est une machine de Turing qui peut simuler n'importe quelle machine de Turing sur n'importe quelle entrée.
Low frequency oscillatorvignette|LFO sur le Jupiter-6 de Roland. Le Low frequency oscillator (LFO) est un générateur d'oscillation très basse fréquence, utilisé en musique pour commander des modulations lentes et périodiques sur un signal sonore. alt=photo d'un synthétiseur modulaire|vignette|Synthétiseur modulaire. Le LFO est un oscillateur analogique, numérique ou logiciel, dont la particularité est d'atteindre des fréquences infrasonique, donc inaudibles ; il est cependant utilisé en musique pour modifier un autre son.
Loi hypergéométriqueLa loi hypergéométrique de paramètres associés , et est une loi de probabilité discrète, décrivant le modèle suivant : On tire simultanément (ou successivement sans remise (mais cela induit un ordre)) boules dans une urne contenant boules gagnantes et boules perdantes (avec , soit un nombre total de boules valant = ). On compte alors le nombre de boules gagnantes extraites et on appelle la variable aléatoire donnant ce nombre. L'univers est l'ensemble des entiers de 0 à .