Diviseur (géométrie algébrique)En mathématiques, plus précisément en géométrie algébrique, les diviseurs sont une généralisation des sous-variétés de codimension 1 de variétés algébriques ; deux généralisations différentes sont d'un usage commun : les diviseurs de Weil et les diviseurs de Cartier. Les deux concepts coïncident dans les cas des variétés non singulières. En géométrie algébrique, comme en géométrie analytique complexe, ou en géométrie arithmétique, les diviseurs forment un groupe qui permet de saisir la nature d'un schéma (une variété algébrique, une surface de Riemann, un anneau de Dedekind.
Minimal model programIn algebraic geometry, the minimal model program is part of the birational classification of algebraic varieties. Its goal is to construct a birational model of any complex projective variety which is as simple as possible. The subject has its origins in the classical birational geometry of surfaces studied by the Italian school, and is currently an active research area within algebraic geometry. The basic idea of the theory is to simplify the birational classification of varieties by finding, in each birational equivalence class, a variety which is "as simple as possible".
Linear system of divisorsIn algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family. These arose first in the form of a linear system of algebraic curves in the projective plane. It assumed a more general form, through gradual generalisation, so that one could speak of linear equivalence of divisors D on a general scheme or even a ringed space (X, OX).
Ample line bundleIn mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space.
DiviseurLe mot “diviseur” a deux significations en mathématiques. Une division est effectuée à partir d’un “dividende” et d’un “diviseur”, et une fois l’opération terminée, le produit du “quotient” par le diviseur augmenté du “reste” est égal au dividende. En arithmétique, un “diviseur” d'un entier n est un entier dont n est un multiple. Plus formellement, si d et n sont deux entiers, d est un diviseur de n seulement s'il existe un entier k tel que . Ainsi est un diviseur de car .
Géométrie birationnellethumb|right|Le cercle est birationnellement équivalent à la droite. Un exemple d'application birationnelle est la projection stéréographique, représentée ici ; avec les notations du texte, P a pour abscisse 1/t. En mathématiques, la géométrie birationnelle est un domaine de la géométrie algébrique dont l'objectif est de déterminer si deux variétés algébriques sont isomorphes, à un ensemble négligeable près. Cela revient à étudier des applications définies par des fonctions rationnelles plutôt que par des polynômes, ces applications n'étant pas définies aux pôles des fonctions.
Indépendance linéaireEn algèbre linéaire, étant donné une famille de vecteurs d'un même espace vectoriel, les vecteurs de la famille sont linéairement indépendants, ou forment une famille libre, si la seule combinaison linéaire de ces vecteurs qui soit égale au vecteur nul est celle dont tous les coefficients sont nuls. Cela revient à dire qu'aucun des vecteurs de la famille n'est combinaison linéaire des autres. Dans le cas où des vecteurs ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants, ou qu'ils forment une famille liée.
Variété projectiveEn géométrie algébrique, les variétés projectives forment une classe importante de variétés. Elles vérifient des propriétés de compacité et des propriétés de finitude. C'est l'objet central de la géométrie algébrique globale. Sur un corps algébriquement clos, les points d'une variété projective sont les points d'un ensemble algébrique projectif. On fixe un corps (commutatif) k. Algèbre homogène. Soit B le quotient de par un idéal homogène ( idéal engendré par des polynômes homogènes).
Tautological bundleIn mathematics, the tautological bundle is a vector bundle occurring over a Grassmannian in a natural tautological way: for a Grassmannian of -dimensional subspaces of , given a point in the Grassmannian corresponding to a -dimensional vector subspace , the fiber over is the subspace itself. In the case of projective space the tautological bundle is known as the tautological line bundle. The tautological bundle is also called the universal bundle since any vector bundle (over a compact space) is a pullback of the tautological bundle; this is to say a Grassmannian is a classifying space for vector bundles.
Kähler differentialIn mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available. Let R and S be commutative rings and φ : R → S be a ring homomorphism.