Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Polygone équilatéralEn géométrie, un polygone équilatéral est un polygone qui a tous ses côtés de même longueur. Il n'est régulier que si de plus il est équiangle, c'est-à-dire si tous ses angles ont la même mesure. En géométrie euclidienne traditionnelle, tous les triangles équilatéraux sont semblables entre eux et réguliers : leurs trois angles valent 60 degrés. Un quadrilatère équilatéral s'appelle un losange. Le seul losange régulier est le carré. Un polygone équilatéral n'est pas nécessairement convexe, ni même simple : 5-gon equilateral 03.
Application linéaireEn mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires. L’expression peut s’utiliser aussi pour un morphisme entre deux modules sur un anneau, avec une présentation semblable en dehors des notions de base et de dimension. Cette notion étend celle de fonction linéaire en analyse réelle à des espaces vectoriels plus généraux.
Interpolation linéaireright|300px|thumb|Les points rouges correspondent aux points (xk,yk), et la courbe bleue représente la fonction d'interpolation, composée de segments de droite. L’interpolation linéaire est la méthode la plus simple pour estimer la valeur prise par une fonction continue entre deux points déterminés (interpolation). Elle consiste à utiliser pour cela la fonction affine (de la forme f(x) = m.x + b) passant par les deux points déterminés.
Extended precisionExtended precision refers to floating-point number formats that provide greater precision than the basic floating-point formats. Extended precision formats support a basic format by minimizing roundoff and overflow errors in intermediate values of expressions on the base format. In contrast to extended precision, arbitrary-precision arithmetic refers to implementations of much larger numeric types (with a storage count that usually is not a power of two) using special software (or, rarely, hardware).
Cercle circonscritEn géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, c'est-à-dire situés sur un même cercle. Si le polygone n'est pas aplati, ce cercle est unique et son centre est le point de concours des médiatrices des côtés. Un polygone n'a pas nécessairement de cercle circonscrit, mais les triangles, les rectangles et les polygones réguliers sont tous inscriptibles.
Produit de KroneckerEn mathématiques, le produit de Kronecker est une opération portant sur les matrices. Il s'agit d'un cas particulier du produit tensoriel. Il est ainsi dénommé en hommage au mathématicien allemand Leopold Kronecker. Soient A une matrice de taille m x n et B une matrice de taille p x q. Leur produit tensoriel est la matrice A ⊗ B de taille mp par nq, définie par blocs successifs de taille p x q, le bloc d'indice i,j valant a B En d'autres termes Ou encore, en détaillant les coefficients, Comme le montre l'exemple ci-dessous, le produit de Kronecker de deux matrices consiste à recopier plusieurs fois la deuxième matrice, en la multipliant par le coefficient correspondant à un terme de la première matrice.
Uniform tilingIn geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra which can be considered uniform tilings of the sphere. Most uniform tilings can be made from a Wythoff construction starting with a symmetry group and a singular generator point inside of the fundamental domain.
Polygon partitionIn geometry, a partition of a polygon is a set of primitive units (e.g. squares), which do not overlap and whose union equals the polygon. A polygon partition problem is a problem of finding a partition which is minimal in some sense, for example a partition with a smallest number of units or with units of smallest total side-length. Polygon partitioning is an important class of problems in computational geometry. There are many different polygon partition problems, depending on the type of polygon being partitioned and on the types of units allowed in the partition.
Espace affineEn géométrie, la notion d'espace affine généralise la notion d'espace issue de la géométrie euclidienne en omettant les notions d'angle et de distance. Dans un espace affine, on peut parler d'alignement, de parallélisme, de barycentre. Sous la forme qui utilise des rapports de mesures algébriques, qui est une notion affine, le théorème de Thalès et le théorème de Ceva sont des exemples de théorèmes de géométrie affine plane réelle (c'est-à-dire n'utilisant que la structure d'espace affine du plan réel).