Coordonnées barycentriquesEn géométrie affine, les coordonnées barycentriques d'un point par rapport à un repère barycentrique sont une famille de poids permettant de définir ce point comme un barycentre. Repère affine Une famille finie (P,...,P) de points d'un espace affine E est dite affinement libre, ou encore ces points sont dits affinement indépendants, quand aucun des points P n'appartient au sous-espace affine engendré par les k autres points. Dans le cas contraire il est dit affinement lié.
Polygone régulierEn géométrie euclidienne, un polygone régulier est un polygone à la fois équilatéral (tous ses côtés ont la même longueur) et équiangle (tous ses angles ont la même mesure). Un polygone régulier est soit convexe, soit étoilé. Tous les polygones réguliers convexes d'un même nombre de côtés sont semblables. Tout polygone régulier étoilé de n côtés a une enveloppe convexe de n côtés, qui est un polygone régulier. Un entier n supérieur ou égal à 3 étant donné, il existe un polygone régulier convexe de n côtés.
Infinite skew polygonIn geometry, an infinite skew polygon or skew apeirogon is an infinite 2-polytope with vertices that are not all colinear. Infinite zig-zag skew polygons are 2-dimensional infinite skew polygons with vertices alternating between two parallel lines. Infinite helical polygons are 3-dimensional infinite skew polygons with vertices on the surface of a cylinder. Regular infinite skew polygons exist in the Petrie polygons of the affine and hyperbolic Coxeter groups.
Combinaison barycentriqueEn géométrie vectorielle, une combinaison barycentrique ou combinaison affine de vecteurs est une combinaison linéaire dont la somme des coefficients est égale à 1. L’expression s’emploie par défaut pour une somme finie, mais parfois aussi pour la limite d’une série sous réserve de convergence. Les combinaisons barycentriques correspondent ainsi aux barycentres des vecteurs vus comme des points de l’espace affine associé, et l’ensemble de ces combinaisons barycentriques constitue le sous-espace affine engendré par ces points.
Interpolation numériqueEn analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l'interpolation est une opération mathématique permettant de remplacer une courbe ou une fonction par une autre courbe (ou fonction) plus simple, mais qui coïncide avec la première en un nombre fini de points (ou de valeurs) donnés au départ. Suivant le type d'interpolation, outre le fait de coïncider en un nombre fini de points ou de valeurs, il peut aussi être demandé à la courbe ou à la fonction construite de vérifier des propriétés supplémentaires.
Conical combinationGiven a finite number of vectors in a real vector space, a conical combination, conical sum, or weighted sum of these vectors is a vector of the form where are non-negative real numbers. The name derives from the fact that a conical sum of vectors defines a cone (possibly in a lower-dimensional subspace). The set of all conical combinations for a given set S is called the conical hull of S and denoted cone(S) or coni(S). That is, By taking k = 0, it follows the zero vector (origin) belongs to all conical hulls (since the summation becomes an empty sum).
Star-shaped polygonIn geometry, a star-shaped polygon is a polygonal region in the plane that is a star domain, that is, a polygon that contains a point from which the entire polygon boundary is visible. Formally, a polygon P is star-shaped if there exists a point z such that for each point p of P the segment \overline{zp} lies entirely within P. The set of all points z with this property (that is, the set of points from which all of P is visible) is called the kernel of P.
Indépendance linéaireEn algèbre linéaire, étant donné une famille de vecteurs d'un même espace vectoriel, les vecteurs de la famille sont linéairement indépendants, ou forment une famille libre, si la seule combinaison linéaire de ces vecteurs qui soit égale au vecteur nul est celle dont tous les coefficients sont nuls. Cela revient à dire qu'aucun des vecteurs de la famille n'est combinaison linéaire des autres. Dans le cas où des vecteurs ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants, ou qu'ils forment une famille liée.
Partie étoiléeEn géométrie, une partie A d'un espace affine réel E est dite étoilée par rapport à un point a de A si, pour tout point x de A, le segment [a, x] est contenu dans A, c'est-à-dire que dans A, tout point peut être relié à a par un chemin rectiligne. Plus formellement, puisque le segment [a, x] est l'ensemble des barycentres à coefficients positifs des points a et x : une partie non vide A de E est étoilée par rapport à un point a de E si (Cette condition assure que a est forcément dans A.
Polygone simpleEn géométrie, un polygone est dit simple si deux côtés non consécutifs ne se rencontrent pas et deux côtés consécutifs n'ont en commun que l'un de leurs sommets, autrement dit, si ses segments forment une courbe de Jordan. Un polygone simple est topologiquement équivalent à un cercle. Les polygones simples sont aussi appelés « polygones de Jordan », en relation avec le théorème de Jordan qui établit que toute courbe fermée du plan qui « ne se recoupe pas » divise le plan en deux régions : l'intérieur et l'extérieur.