Publication

Eigenvalue multiplicities of group elements in irreducible representations of simple linear algebraic groups

Ana-Maria Retegan
2022
Thèse EPFL
Résumé

Let k be an algebraically closed field of arbitrary characteristic, let G be a simple simply connected linear algebraic group and let V be a rational irreducible tensor-indecomposable finite-dimensional kG-module. For an element g of G we denote by Vg(x)V_{g}(x) the eigenspace corresponding to the eigenvalue x of g on V. We define N to be the minimum difference between the dimension of V and the dimension of Vg(x)V_{g}(x), where g is a non-central element of G. In this thesis we identify pairs (G,V) with the property that Ndim(V)N\leq \sqrt{\dim(V)}. This problem is an extension of the classification result obtained by Guralnick and Saxl for the condition Nmax{2,dim(V)2}N\leq \max\bigg\{2,\frac{\sqrt{\dim(V)}}{2}\bigg\}. Moreover, for all the pairs (G,V) we had to consider in our classification, we will determine the value of N.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.