Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper, we investigate Wall-Modeled Large Eddy Simulation (WMLES) in a stairmand high-efficiency cyclone separator at two Reynolds numbers i.e. Re = 33,045 - 280,000. We compute the gas flow using the elliptic relaxation hybrid RANS/LES (ER-HRL). The model employs a wall integration linear eddy viscosity RANS model for the wall-adjacent region, and switches to the LES dynamic model in the bulk flow. At the lower Reynolds number i.e. Re = 33,045, we investigate the effect of varying cone bottom opening – rendering three different cyclone configurations – on cyclone performance. Flow statistics are reported at several locations across the cyclone axis where both mean and RMS values are observed. For high Reynolds number i.e. Re = 280,000, results are compared against LES and experimental databases from literature. Model predictions of mean flow are in good agreement with reference data, while higher-order moments i.e. RMS values are not very well predicted by the model despite following the same trend of experimental data. Results are in a global good agreement with LES and experimental data at a fraction of well-resolved LES CPU cost. This analysis will serve as a good basis for further investigation of cyclone grade efficiency using Lagrangian particle tracking.
Mohamed Aly Hashem Mohamed Sayed
Fabio Nobile, Sebastian Krumscheid, Michele Pisaroni