Représentation galoisienneLa théorie des représentations galoisiennes est l'application naturelle de la théorie des représentations à la théorie algébrique des nombres. Un module galoisien est un module sur lequel agit un groupe de Galois G. Ces modules seront par exemple des groupes d'unités, des groupes des classes, ou des groupes de Galois eux-mêmes. En théorie algébrique des nombres classique, soit L une extension galoisienne d'un corps de nombres K, et soit G le groupe de Galois correspondant.
Parabolic inductionIn mathematics, parabolic induction is a method of constructing representations of a reductive group from representations of its parabolic subgroups. If G is a reductive algebraic group and is the Langlands decomposition of a parabolic subgroup P, then parabolic induction consists of taking a representation of , extending it to P by letting N act trivially, and inducing the result from P to G. There are some generalizations of parabolic induction using cohomology, such as cohomological parabolic induction and Deligne–Lusztig theory.
Topologie de ZariskiEn géométrie algébrique et en théorie des catégories, le terme topologie de Zariski peut désigner quatre notions proches : une certaine topologie définie sur une variété algébrique. Les fermés de cette topologie sont les ensembles algébriques ; une topologie définie de manière analogue sur le spectre premier d'un anneau commutatif ; une topologie définie sur un schéma, qui, localement, provient de la topologie de Zariski définie sur un spectre d'anneau ; une topologie de Grothendieck sur un site.
Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Groupe modulaireEn mathématiques, on appelle groupe modulaire le groupe PSL(2, Z), quotient du groupe spécial linéaire SL(2, Z) par son centre { Id, –Id }. Il s'identifie à l'image de SL(2, Z) dans le groupe de Lie On le note souvent Γ(1) ou simplement Γ. Ce nom provient de l'action à gauche et fidèle de Γ(1) par homographies sur le demi-plan de Poincaré H des nombres complexes de partie imaginaire strictement positive. Cette action n'est que la restriction de l'action de PGL(2, C) sur la droite projective complexe P(C) = C ∪ {∞} : la matrice agit sur P(C) par la transformation de Möbius qui en envoie z sur .
Anneau finiEn mathématiques, un anneau fini est un anneau qui a un nombre fini d'éléments. Chaque corps fini est un exemple d’anneau fini, et la partie additive de chaque anneau fini est un exemple de groupe fini et abélien, mais la notion même d’anneaux finis a une histoire plus récente. Comme les anneaux sont plus rigides que les groupes, la classification des anneaux finis est plus simple que celle des groupes finis.
Corps finiEn mathématiques et plus précisément en algèbre, un corps fini est un corps commutatif qui est par ailleurs fini. À isomorphisme près, un corps fini est entièrement déterminé par son cardinal, qui est toujours une puissance d'un nombre premier, ce nombre premier étant sa caractéristique. Pour tout nombre premier p et tout entier non nul n, il existe un corps de cardinal pn, qui se présente comme l'unique extension de degré n du corps premier Z/pZ.
Variété algébrique affineEn géométrie algébrique, une variété affine est un modèle local pour les variétés algébriques, c'est-à-dire que celles-ci sont obtenues par recollement de variétés affines. Grossièrement, une variété affine est un ensemble algébrique affine X avec une structure algébrique supplémentaire qui est la donnée de l'anneau des fonctions régulières sur chaque partie ouverte de X. Ensemble algébrique Le point de vue le plus simple pour décrire une variété algébrique affine est l'ensemble des solutions d'un système d'équations polynomiales à coefficients dans un corps commutatif K.
Irreducible componentIn algebraic geometry, an irreducible algebraic set or irreducible variety is an algebraic set that cannot be written as the union of two proper algebraic subsets. An irreducible component is an algebraic subset that is irreducible and maximal (for set inclusion) for this property. For example, the set of solutions of the equation xy = 0 is not irreducible, and its irreducible components are the two lines of equations x = 0 and y =0.
Cyclotomic characterIn number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring R, its representation space is generally denoted by R(1) (that is, it is a representation χ : G → AutR(R(1)) ≈ GL(1, R)). Fix p a prime, and let GQ denote the absolute Galois group of the rational numbers. The roots of unity form a cyclic group of order , generated by any choice of a primitive pnth root of unity ζn.