Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Physique numériqueLa physique numérique (ou parfois physique informatique) est l'étude et l'implémentation d'algorithmes numériques dans le but de résoudre des problèmes physiques pour lesquels une théorie existe déjà. Elle est souvent considérée comme une sous-discipline de la physique théorique mais certains la considèrent comme une branche intermédiaire entre la physique théorique et la physique expérimentale. En général, les physiciens définissent un système et son évolution grâce à des formules mathématiques précises.
Short-circuit evaluationShort-circuit evaluation, minimal evaluation, or McCarthy evaluation (after John McCarthy) is the semantics of some Boolean operators in some programming languages in which the second argument is executed or evaluated only if the first argument does not suffice to determine the value of the expression: when the first argument of the AND function evaluates to false, the overall value must be false; and when the first argument of the OR function evaluates to true, the overall value must be true.
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Chicken (Scheme implementation)Chicken (stylized as CHICKEN) is a programming language, specifically a compiler and interpreter which implement a dialect of the programming language Scheme, and which compiles Scheme source code to standard C. It is mostly R5RS compliant and offers many extensions to the standard. The newer R7RS standard is supported through an extension library. Chicken is free and open-source software available under a BSD license. It is implemented mostly in Scheme, with some parts in C for performance or to make embedding into C programs easier.
Générateur de nombres aléatoiresUn générateur de nombres aléatoires, random number generator (RNG) en anglais, est un dispositif capable de produire une suite de nombres pour lesquels il n'existe aucun lien calculable entre un nombre et ses prédécesseurs, de façon que cette séquence puisse être appelée « suite de nombres aléatoires ». Par extension, on utilise ce terme pour désigner des générateurs de nombres pseudo aléatoires, pour lesquels ce lien calculable existe, mais ne peut pas « facilement » être déduit.
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
Équationvignette|upright=1.2|Robert Recorde est un précurseur pour l'écriture d'une équation. Il invente l'usage du signe = pour désigner une égalité. vignette|upright=1.2|Un système dynamique correspond à un type particulier d'équation, dont les solutions recherchées sont des fonctions. Le comportement limite est parfois complexe. Dans certains cas, il est caractérisé par une curieuse figure géométrique, appelée attracteur étrange. Une équation est, en mathématiques, une relation (en général une égalité) contenant une ou plusieurs variables.
Convergence uniformeLa convergence uniforme d'une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. La convergence devient uniforme quand toutes les suites avancent vers leur limite respective avec une sorte de « mouvement d'ensemble ». Dans le cas de fonctions numériques d'une variable, la notion prend une forme d'« évidence » géométrique : le graphe de la fonction f se « rapproche » de celui de la limite. Soient X un ensemble, (Y, d) un espace métrique, et A un sous-ensemble de X.