Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
RéfractionEn physique des ondes, la réfraction désigne la courbe d'une onde (notamment optique, acoustique ou sismologique) à l'interface entre deux milieux aux vitesses de phase différentes sur le plan chimique ou physique (densité, impédance, température...) La réfraction se traduit par une modification de l'orientation : du front d'onde : c'est la ligne que décrit une vague dans l'eau (optique physique et sismologie) ; du rayon : c'est la direction de propagation de l'onde, perpendiculaire au front d'onde (optique géométrique).
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Biréfringencedroite|vignette|400px|Le texte apparait en double après avoir traversé le cristal de calcite. C'est la double réfraction, un phénomène caractéristique des milieux biréfringents. La biréfringence est la propriété physique d'un matériau dans lequel la lumière se propage de façon anisotrope. Dans un milieu biréfringent, l'indice de réfraction n'est pas unique, il dépend de la direction de polarisation de l'onde lumineuse. Un effet spectaculaire de la biréfringence est la double réfraction par laquelle un rayon lumineux pénétrant dans le cristal est divisé en deux.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Microscope à contraste de phasethumb|Photographie d'un cellule épithéliale de joue vue par un Microscope à contraste de phase Le microscope à contraste de phase est un microscope qui exploite les changements de phase d'une onde lumineuse traversant un échantillon. Cet instrument fut développé par le physicien hollandais Frederik Zernike dans les années 1930, ce qui lui valut le prix Nobel de physique en 1953. Emilie Bleeker, physicienne reconnue pour le développement d'instruments, est la première à mettre le microscope à contraste de phase en utilisation.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Digital microscopeA digital microscope is a variation of a traditional optical microscope that uses optics and a digital camera to output an image to a monitor, sometimes by means of software running on a computer. A digital microscope often has its own in-built LED light source, and differs from an optical microscope in that there is no provision to observe the sample directly through an eyepiece. Since the image is focused on the digital circuit, the entire system is designed for the monitor image. The optics for the human eye are omitted.
3D rendering3D rendering is the 3D computer graphics process of converting 3D models into 2D images on a computer. 3D renders may include photorealistic effects or non-photorealistic styles. Rendering is the final process of creating the actual 2D image or animation from the prepared scene. This can be compared to taking a photo or filming the scene after the setup is finished in real life. Several different, and often specialized, rendering methods have been developed.