Fine-tuning (deep learning)In deep learning, fine-tuning is an approach to transfer learning in which the weights of a pre-trained model are trained on new data. Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (not updated during the backpropagation step). A model may also be augmented with "adapters" that consist of far fewer parameters than the original model, and fine-tuned in a parameter-efficient way by tuning the weights of the adapters and leaving the rest of the model's weights frozen.
DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Ordinateur de plongéeUn ordinateur de plongée permet d'optimiser son temps de plongée en calculant automatiquement la décompression à réaliser par le plongeur. Le calcul de décompression par les tables de décompression (MN90, PADI, etc.) consiste à modéliser une plongée « rectangulaire ». C’est-à-dire que les tables considèrent qu'entre le moment où le plongeur a entamé sa descente et le moment où il va entamer sa remontée, il est resté à la profondeur maximale atteinte sur l'intervalle.
Concordancier multilingueUn concordancier multilingue est un outil informatique permettant de gérer des corpus parallèles. Par métonymie, le concordancier multilingue désigne aussi ces corpus. Un corpus parallèle est un ensemble de groupes de textes qui, deux à deux, dans chaque groupe, sont des traductions mutuelles. L'Acquis communautaire européen est un exemple où chaque groupe comporte un texte pour chacune des langues officielles de l'Union européenne. L'ensemble des groupes désignent les lois régissant la communauté européenne.
Langage naturelUn langage naturel, ou langage ordinaire, est une langue « normale » parlée par un être humain. Il s'oppose au langage formel, tel que le langage informatique, ainsi qu'aux langues construites. histoire des langues On désigne par langage naturel le langage parlé par les humains, apparu entre et avant notre ère.
Plongée en scaphandre autonomeLa plongée en scaphandre autonome, parfois familièrement appelée plongée bouteille ou plongée en bouteille, est un mode de plongée sous-marine se distinguant par l'utilisation d'un scaphandre autonome permettant au plongeur d'évoluer sous l'eau de manière autonome grâce à une réserve de gaz respirable stocké généralement dans une ou des bouteilles de plongée. À l'instar de la plongée libre, elle est largement pratiquée en tant que plongée loisir.
Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
Génération automatique de textesLa génération automatique de texte (GAT) est une sous discipline de la linguistique computationnelle qui vise à exprimer sous une forme textuelle, syntaxiquement et sémantiquement correcte, une représentation formelle d'un contenu. Outre ses nombreuses applications existantes ou potentielles - par exemple pour produire automatiquement des bulletins météorologiques, ou des rapports automatisés - elle offre par ailleurs un cadre d'investigation des théories linguistiques, et particulièrement de ses mécanismes de production.
Word2vecEn intelligence artificielle et en apprentissage machine, Word2vec est un groupe de modèles utilisé pour le plongement lexical (word embedding). Ces modèles ont été développés par une équipe de recherche chez Google sous la direction de . Ce sont des réseaux de neurones artificiels à deux couches entraînés pour reconstruire le contexte linguistique des mots. La méthode est implémentée dans la bibliothèque Python Gensim. Deux architectures ont été initialement proposées pour apprendre les Word2vec, le modèle de sacs de mots continus (CBOW: continuous bag of words) et le modèle skip-gram.
Big dataLe big data ( « grosses données » en anglais), les mégadonnées ou les données massives, désigne les ressources d’informations dont les caractéristiques en termes de volume, de vélocité et de variété imposent l’utilisation de technologies et de méthodes analytiques particulières pour créer de la valeur, et qui dépassent en général les capacités d'une seule et unique machine et nécessitent des traitements parallélisés. L’explosion quantitative (et souvent redondante) des données numériques permet une nouvelle approche pour analyser le monde.