Algèbre linéairevignette|R3 est un espace vectoriel de dimension 3. Droites et plans qui passent par l'origine sont des sous-espaces vectoriels. L’algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires. L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Carte d'identitéUne carte d'identité, parfois dénommée carte nationale d'identité, carte d'identité nationale ou carte d'identification selon le pays, est un document officiel qui permet à une personne physique de prouver son identité. Fin 2018, on estimait que près de d'humains sur la planète (soit une personne sur sept) ne disposaient pas encore de papiers d'identité officiels, ce qui rend les accords écrits, votes, achats en ligne, abonnements téléphoniques et accès aux services publics beaucoup plus difficiles.
Complete homogeneous symmetric polynomialIn mathematics, specifically in algebraic combinatorics and commutative algebra, the complete homogeneous symmetric polynomials are a specific kind of symmetric polynomials. Every symmetric polynomial can be expressed as a polynomial expression in complete homogeneous symmetric polynomials. The complete homogeneous symmetric polynomial of degree k in n variables X1, ..., Xn, written hk for k = 0, 1, 2, ..., is the sum of all monomials of total degree k in the variables.
Matrix decompositionIn the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Théorème fondamental des fonctions symétriquesEn mathématiques, et plus particulièrement en algèbre commutative, le théorème fondamental des fonctions symétriques, souvent appelé « théorème fondamental des polynômes symétriques » ou « théorème de Newton », stipule que tout polynôme symétrique en n indéterminées à coefficients dans un anneau (commutatif) A s'exprime de façon unique par une fonction polynomiale des n polynômes symétriques élémentaires. Autrement dit, les n polynômes symétriques élémentaires forment une partie génératrice de l'algèbre des polynômes symétriques en n indéterminées sur A et sont algébriquement indépendants sur A.
Power sum symmetric polynomialIn mathematics, specifically in commutative algebra, the power sum symmetric polynomials are a type of basic building block for symmetric polynomials, in the sense that every symmetric polynomial with rational coefficients can be expressed as a sum and difference of products of power sum symmetric polynomials with rational coefficients. However, not every symmetric polynomial with integral coefficients is generated by integral combinations of products of power-sum polynomials: they are a generating set over the rationals, but not over the integers.
Matrice identitéEn mathématiques, plus précisement en algèbre linéaire, une matrice identité ou matrice unité est une matrice carrée diagonale dont la diagonale principale est remplie de , et dont les autres coefficients valent . Elle peut s'écrire : La matrice identité de taille se note : Il est possible de noter les coefficients de la matrice identité d'ordre avec le delta de Kronecker : avec Les matrices identité sont des matrices unitaires et sont donc inversibles et normales.
Produit matriciel de Hadamardvignette|Illustration du produit de Hadamard: il s'applique à deux matrices de mêmes dimensions et la matrice en resultant a les mêmes dimensions également. En mathématiques, le produit matriciel de Hadamard, nommé d'après le mathématicien français Jacques Hadamard et parfois désigné produit de Schur, est une opération binaire qui pour deux matrices de mêmes dimensions, associe une autre matrice, de même dimension, et où chaque coefficient est le produit terme à terme des deux matrices.
Identités de GreenEn analyse les identités de Green sont trois identités du calcul vectoriel reliant une intégrale définie dans un volume et celle définie sur le bord de ce volume. Ces relations sont dues à George Green. Soient φ et ψ des fonctions scalaires définies sur le domaine V ⊂ R, limité par le domaine de normale n, orientée vers l'extérieur du domaine, telles que φ soit au moins deux fois différentiables et ψ une fois.
Identité numériqueL'identité numérique (« IDN ») est définie comme un lien technologique entre une entité réelle (personne, organisme ou entreprise) et des entités virtuelles (sa ou ses représentations numériques). Elle permet l'identification de l'individu en ligne ainsi que la mise en relation de celui-ci avec l'ensemble des communautés virtuelles présentes sur le Web. L'identité numérique est non seulement construite par l'entité réelle ou le « Sujet ». Mais elle est aussi grandement influencée par le rapport qu'entretient ce dernier à autrui de même qu'à la société.