Publication

Exploring the inner workings of the clove hitch knot

Concepts associés (34)
Nœud (lien)
vignette|upright=1.4|Nœuds dans "Nordisk familjebok", 1911: 1. Épissure 2. Nœud de tire-veille 3. Nœud en queue de cochon 4. Wall and crown knot 5. Nœud de ride 6. Nœud de hauban 7. Bonnet turc 8. Demi-nœud, Nœud en huit 9. Nœud plat 10. Nœud de grappin vignette|upright=1.4|Nœuds dans "Le Larousse pour tous", 1909. Un nœud est l'enlacement ou l'entrecroisement d'une ou de plusieurs cordes, ou tout autres objets flexibles et de forme filaire (comme un fil, une sangle, un câble, un ruban).
Frottement
En physique, le frottement (ou friction) est une interaction qui s'oppose au mouvement relatif entre deux systèmes en contact. Le frottement peut être étudié au même titre que les autres types de force ou de couple. Son action est caractérisée par une norme et une orientation, ce qui en fait un vecteur. L'orientation de la force (ou du couple) de frottement créé sur un corps est opposée au déplacement relatif de ce corps par rapport à son environnement. La science qui étudie le frottement entre solides est la tribologie.
Théorie des nœuds
thumb|right|Représentation d’un nœud torique de type (3, 8). La théorie des nœuds est une branche de la topologie qui consiste en l'étude mathématique de courbes présentant des liaisons avec elles-mêmes, un « bout de ficelle » idéalisé en lacets. Elle est donc très proche de la théorie des tresses qui comporte plusieurs chemins ou « bouts de ficelle ». left|thumb|Nœuds triviaux La théorie des nœuds a commencé vers 1860 et avec des travaux de Carl Friedrich Gauss liés à l'électromagnétisme.
Chiral knot
In the mathematical field of knot theory, a chiral knot is a knot that is not equivalent to its mirror image (when identical while reversed). An oriented knot that is equivalent to its mirror image is an amphicheiral knot, also called an achiral knot. The chirality of a knot is a knot invariant. A knot's chirality can be further classified depending on whether or not it is invertible. There are only five knot symmetry types, indicated by chirality and invertibility: fully chiral, invertible, positively amphicheiral noninvertible, negatively amphicheiral noninvertible, and fully amphicheiral invertible.
Nœud de trèfle
vignette|Faire un nœud de trèfle (vidéo) vignette|Surface de Seifert associée à un nœud de trèfle : il en forme le bord. En théorie des nœuds, le nœud de trèfle est le nœud le plus simple après le nœud trivial. C'est le seul nœud premier à trois croisements. On peut aussi le décrire comme nœud torique de type (2,3), son mot dans le groupe de tresses étant σ13. Une autre description (liée à la précédente) est l'intersection de la sphère unité dans C2 avec la courbe plane complexe d'équation .
Nœud (mathématiques)
En mathématiques, et plus particulièrement en géométrie et en topologie algébrique, un nœud est un plongement d'un cercle dans R, l'espace euclidien de dimension 3, considéré à des déformations continues près. Une différence essentielle entre les nœuds usuels et les nœuds mathématiques est que ces derniers sont fermés (sans extrémités permettant de les nouer ou de les dénouer) ; les propriétés physiques des nœuds réels, telles que la friction ou l'épaisseur des cordes, sont généralement également négligées.
Tomographie
vignette|Principe de base de la tomographie par projections : les coupes tomographiques transversales S1 et S2 sont superposées et comparées à l’image projetée P. La tomographie est une technique d’, très utilisée dans l’, ainsi qu’en géophysique, en astrophysique et en mécanique des matériaux. Cette technique permet de reconstruire le volume d’un objet à partir d’une série de mesures effectuées depuis l’extérieur de cet objet.
Mécanique des contacts
La mécanique des contacts traite des calculs impliquant des corps élastiques, visco-élastiques ou plastiques lors de contacts statiques ou dynamiques. La mécanique des contacts est l’un des fondements de l’ingénierie mécanique et est indispensable pour la conception de projets sûrs et énergiquement efficaces. Elle peut être appliquée dans différents domaines tel que le contact roue-rail, les embrayages, les freins, les pneumatiques, les paliers et roulements, les moteurs à combustion, les liaisons mécaniques, les joints, les machines de production, le soudage par ultrasons, les contacts électriques et bien d'autres.
Knot polynomial
In the mathematical field of knot theory, a knot polynomial is a knot invariant in the form of a polynomial whose coefficients encode some of the properties of a given knot. The first knot polynomial, the Alexander polynomial, was introduced by James Waddell Alexander II in 1923. Other knot polynomials were not found until almost 60 years later. In the 1960s, John Conway came up with a skein relation for a version of the Alexander polynomial, usually referred to as the Alexander–Conway polynomial.
Géométrie elliptique
Une géométrie elliptique est une géométrie non euclidienne. Les axiomes sont identiques à ceux de la géométrie euclidienne à l'exception de l'axiome des parallèles : en géométrie elliptique, étant donné une droite et un point extérieur à cette droite, il n'existe aucune droite parallèle à cette droite passant par ce point. Il est équivalent de dire que la somme des angles d'un triangle est toujours supérieure à .

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.