Diffuse reflectionDiffuse reflection is the reflection of light or other waves or particles from a surface such that a ray incident on the surface is scattered at many angles rather than at just one angle as in the case of specular reflection. An ideal diffuse reflecting surface is said to exhibit Lambertian reflection, meaning that there is equal luminance when viewed from all directions lying in the half-space adjacent to the surface.
Fonction de répartitionEn théorie des probabilités, la fonction de répartition, ou fonction de distribution cumulative, d'une variable aléatoire réelle X est la fonction F_X qui, à tout réel x, associe la probabilité d’obtenir une valeur inférieure ou égale : Cette fonction est caractéristique de la loi de probabilité de la variable aléatoire.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Digital imagingDigital imaging or digital image acquisition is the creation of a digital representation of the visual characteristics of an object, such as a physical scene or the interior structure of an object. The term is often assumed to imply or include the , , , printing and display of such images. A key advantage of a , versus an analog image such as a film photograph, is the ability to digitally propagate copies of the original subject indefinitely without any loss of image quality.
Fonction de répartition empiriqueEn statistiques, une fonction de répartition empirique est une fonction de répartition qui attribue la probabilité 1/n à chacun des n nombres dans un échantillon. Soit X,...,X un échantillon de variables iid définies sur un espace de probabilité , à valeurs dans , avec pour fonction de répartition F. La fonction de répartition empirique de l'échantillon est définie par : où est la fonction indicatrice de l'événement A. Pour chaque ω, l'application est une fonction en escalier, fonction de répartition de la loi de probabilité uniforme sur l'ensemble .
Image numériqueL'appellation d'image numérique désigne toute (dessin, icône, photographie...) acquise, créée, traitée et stockée sous forme binaire : acquise par des convertisseurs analogique-numérique situés dans des dispositifs comme les scanners, les appareils photo ou les caméscopes numériques, les cartes d’acquisition vidéo (qui numérisent directement une source comme la télévision) créée directement par des programmes informatiques, grâce à une souris, des tablettes graphiques ou par de la modélisation 3D (ce que l’on appelle, par abus de langage, les « images de synthèse ») ; traitée grâce à des outils graphiques, de façon à la transformer, à en modifier la taille, les couleurs, d’y ajouter ou d'en supprimer des éléments, d’y appliquer des filtres variés stockée sur un support informatique (clé USB, SSD, disque dur, CD-ROM.
Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Loi de Cauchy (probabilités)La loi de Cauchy, appelée aussi loi de Lorentz, est une loi de probabilité continue qui doit son nom au mathématicien Augustin Louis Cauchy. Une variable aléatoire X suit une loi de Cauchy si sa densité , dépendant des deux paramètres et ( > 0) est définie par : La fonction ainsi définie s'appelle une lorentzienne. Elle apparaît par exemple en spectroscopie pour modéliser des raies d'émission. Cette distribution est symétrique par rapport à (paramètre de position), le paramètre donnant une information sur l'étalement de la fonction (paramètre d'échelle).
Fonction quantileEn probabilités, la fonction quantile est une fonction qui définit les quantiles. Soit X une variable aléatoire et F sa fonction de répartition, la fonction quantile est définie par pour toute valeur de , la notation désignant l’inverse généralisé à gauche de . Si F est une fonction strictement croissante et continue, alors est l'unique valeur de telle que . correspond alors à la fonction réciproque de , notée . En revanche, pour les lois discrètes, les fonctions de répartition sont toutes en escalier, d'où l'intérêt de la définition précédente.
Éclairement lumineuxL’éclairement lumineux est la grandeur définie par la photométrie correspondant à la sensation humaine sur la manière dont une surface est éclairée. Pour qu'un objet qui ne produit pas de lumière par lui-même soit visible, il faut qu'il reçoive de la lumière. Plus il en reçoit, plus il est clair, et visible distinctement. La photométrie définit rigoureusement la lumière reçue, afin de pouvoir calculer cette grandeur, connaissant l'intensité lumineuse des sources de lumière, leur distance et leur direction.