Intelligence artificielle générativeL'intelligence artificielle générative ou IA générative (ou GenAI) est un type de système d'intelligence artificielle (IA) capable de générer du texte, des images ou d'autres médias en réponse à des invites (ou "prompts"). Les modèles génératifs apprennent les modèles et la structure des données d'entrée, puis génèrent un nouveau contenu similaire aux données d'apprentissage mais avec un certain degré de nouveauté (plutôt que de simplement classer ou prédire les données).
Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
Géométrie projectiveEn mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
Vision par ordinateurLa vision par ordinateur est un domaine scientifique et une branche de l’intelligence artificielle qui traite de la façon dont les ordinateurs peuvent acquérir une compréhension de haut niveau à partir d's ou de vidéos numériques. Du point de vue de l'ingénierie, il cherche à comprendre et à automatiser les tâches que le système visuel humain peut effectuer. Les tâches de vision par ordinateur comprennent des procédés pour acquérir, traiter, et « comprendre » des images numériques, et extraire des données afin de produire des informations numériques ou symboliques, par ex.
Attention (machine learning)Machine learning-based attention is a mechanism mimicking cognitive attention. It calculates "soft" weights for each word, more precisely for its embedding, in the context window. It can do it either in parallel (such as in transformers) or sequentially (such as recursive neural networks). "Soft" weights can change during each runtime, in contrast to "hard" weights, which are (pre-)trained and fine-tuned and remain frozen afterwards. Multiple attention heads are used in transformer-based large language models.
Computational photographyComputational photography refers to digital image capture and processing techniques that use digital computation instead of optical processes. Computational photography can improve the capabilities of a camera, or introduce features that were not possible at all with film based photography, or reduce the cost or size of camera elements. Examples of computational photography include in-camera computation of digital panoramas, high-dynamic-range images, and light field cameras.
3D temps réelvignette|Rendu VR d'une rivière en 2000. La 3D temps réel qui concerne l'imagerie de synthèse, est une méthode de représentation de données tri-dimensionnelles pour laquelle chaque image composant l'animation est rendue dans l'instant qui précède son affichage. La 3D temps réel ne doit pas être confondue avec les effets stéréoscopiques (relief en trois dimensions, même s'il est possible de faire de la 3D temps réel en relief), ni avec un système temps réel pour lequel le respect des contraintes temporelles et au moins aussi important que le résultat.
Géométrie algorithmiquevignette|Rendu d'un cylindre à l'aide d'un programme d'ordinateur. La géométrie algorithmique est le domaine de l'algorithmique qui traite des algorithmes manipulant des concepts géométriques. La géométrie algorithmique est l'étude des algorithmes manipulant des objets géométriques. Par exemple, le problème algorithmique qui consiste, étant donné un ensemble de points dans le plan décrits par leurs coordonnées, à trouver la paire de points dont la distance est minimale est un problème d'algorithmique géométrique.
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
CaustiqueUne caustique désigne en optique et en mathématiques l'enveloppe des rayons lumineux subissant une réflexion ou une réfraction sur une surface ou une courbe. Plus spécifiquement, on parle de caustique « au flambeau » lorsque les rayons lumineux sont issus d'un point à distance finie et de caustique « au soleil » si la source lumineuse se trouve à une distance infinie. Une caustique par réflexion est aussi appelée « catacaustique », tandis qu'une caustique par réfraction est appelée « diacaustique ».