Arbre de décisionvignette| Arbre de décision Un arbre de décision est un outil d'aide à la décision représentant un ensemble de choix sous la forme graphique d'un arbre. Les différentes décisions possibles sont situées aux extrémités des branches (les « feuilles » de l'arbre), et sont atteintes en fonction de décisions prises à chaque étape. L'arbre de décision est un outil utilisé dans des domaines variés tels que la sécurité, la fouille de données, la médecine, etc. Il a l'avantage d'être lisible et rapide à exécuter.
Arbre de décision (apprentissage)L’apprentissage par arbre de décision désigne une méthode basée sur l'utilisation d'un arbre de décision comme modèle prédictif. On l'utilise notamment en fouille de données et en apprentissage automatique. Dans ces structures d'arbre, les feuilles représentent les valeurs de la variable-cible et les embranchements correspondent à des combinaisons de variables d'entrée qui mènent à ces valeurs. En analyse de décision, un arbre de décision peut être utilisé pour représenter de manière explicite les décisions réalisées et les processus qui les amènent.
Gradient boostingGradient boosting is a machine learning technique used in regression and classification tasks, among others. It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple decision trees. When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest.
Algorithme probabilisteEn algorithmique, un algorithme probabiliste, ou algorithme randomisé, est un algorithme qui utilise une source de hasard. Plus précisément le déroulement de l’algorithme fait appel à des données tirées au hasard. Par exemple à un certain point de l’exécution, on tire un bit 0 ou 1, selon la loi uniforme et si le résultat est 0, on fait une certaine action A et si c'est 1, on fait une autre action. On peut aussi tirer un nombre réel dans l'intervalle [0,1] ou un entier dans un intervalle [i..j].
Forêt d'arbres décisionnelsvignette|Illustration du principe de construction d'une forêt aléatoire comme agrégation d'arbre aléatoires. En apprentissage automatique, les forêts d'arbres décisionnels (ou forêts aléatoires de l'anglais random forest classifier) forment une méthode d'apprentissage ensembliste. Ils ont été premièrement proposées par Ho en 1995 et ont été formellement proposées en 2001 par Leo Breiman et Adele Cutler. Cet algorithme combine les concepts de sous-espaces aléatoires et de bagging.
Fonction d'erreurthumb|right|upright=1.4|Construction de la fonction d'erreur réelle. En mathématiques, la fonction d'erreur (aussi appelée fonction d'erreur de Gauss) est une fonction entière utilisée en analyse. Cette fonction se note erf et fait partie des fonctions spéciales. Elle est définie par : La fonction erf intervient régulièrement dans le domaine des probabilités et statistiques, ainsi que dans les problèmes de diffusion (de la chaleur ou de la matière).
Decision tree pruningPruning is a data compression technique in machine learning and search algorithms that reduces the size of decision trees by removing sections of the tree that are non-critical and redundant to classify instances. Pruning reduces the complexity of the final classifier, and hence improves predictive accuracy by the reduction of overfitting. One of the questions that arises in a decision tree algorithm is the optimal size of the final tree. A tree that is too large risks overfitting the training data and poorly generalizing to new samples.
Fonction gammaEn mathématiques, la fonction gamma (notée par Γ la lettre grecque majuscule gamma de l'alphabet grec) est une fonction utilisée communément, qui prolonge de la fonction factorielle à l'ensemble des nombres complexes. En ce sens, il s'agit une fonction complexe. Elle est considérée également comme une fonction spéciale. La fonction gamma est défini pour tous les nombres complexes, à l'exception des entiers négatifs. On a pour tout entier strictement positif, où est la factorielle de , c'est-à-dire le produit des entiers entre 1 et : .
Arbre de jeuEn théorie des jeux, un arbre de jeu est un arbre (au sens de la théorie des graphes) dont les nœuds sont des positions dans un jeu et dont les arêtes sont des mouvements. L'arbre de jeu complet est l'arbre de jeu commençant à la position initiale et contenant tous les mouvements possibles depuis chaque position. vignette| Les deux premiers de l'arbre de jeu pour le tic-tac-toe. Le diagramme ci-contre montre comment coder dans une représentation arborescente le premier tour de jeu au tic-tac-toe : ce sont les deux premiers niveaux dans l'arborescence, la racine représentant la position initiale (une grille vide, en l'occurrence).
TreapEn informatique, les notions de treap ou arbretas et d'arbres binaires de recherche randomisés sont deux formes très proche d'arbre binaire de recherche, des structures de données qui maintiennent un ensemble dynamique de clés ordonnées et permettent d'effectuer une recherche binaire parmi ces clés.