HomoplasieL’homoplasie est la similitude d’un état de caractère chez différents taxons qui, contrairement à l’homologie, ne provient pas d’un ancêtre commun. Il existe différents types d’homoplasie : la convergence, le parallélisme et la réversion. la convergence : ressemblance apparue indépendamment chez des taxons distants phylogénétiquement. le parallélisme : ressemblance apparue chez des taxons relativement proches. la réversion : un état dérivé d’un caractère revient à un état ancestral (antérieur).
PhylogénieLa phylogenèse ou phylogénie, du grec ancien , « tribu, famille, clan » et , « création », est l'étude des liens de parenté (relations phylogénétiques ou phylétiques) entre les êtres vivants et ceux qui ont disparu : entre individus (niveau généalogique ; seule une généalogie individuelle peut répondre à la question « qui est l'ancêtre de qui ? », tandis qu'une phylogénie de groupe peut répondre à la question « qui est le plus proche parent de qui ? ») ; entre populations (à l'intérieur d'une même espèce qu
Modèle mixteUn modèle mixte est un modèle statistique qui comporte à la fois des effets fixes et des effets aléatoires. Ce type de modèle est utile dans une grande variété de domaines, tels que la physique, la biologie ou encore les sciences sociales. Les modèles mixtes sont particulièrement utiles dans les situations où des mesures répétées sont effectuées sur les mêmes variables (étude longitudinale). Ils sont souvent préférés à d'autres approches telle que rANOVA, dans la mesure où ils peuvent être utilisés dans le cas où le jeu de données présente des valeurs manquantes.
Computational phylogeneticsComputational phylogenetics is the application of computational algorithms, methods, and programs to phylogenetic analyses. The goal is to assemble a phylogenetic tree representing a hypothesis about the evolutionary ancestry of a set of genes, species, or other taxa. For example, these techniques have been used to explore the family tree of hominid species and the relationships between specific genes shared by many types of organisms.
Statistique bayésienneLa statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.
Rasoir d'Ockhamvignette|Frater Occham iste : illustration manuscrite de Guillaume d'Ockham (1341). Le rasoir d'Ockham ou rasoir d'Occam est un principe de raisonnement philosophique entrant dans les concepts de rationalisme et de nominalisme. Le terme vient de « raser » qui, en philosophie, signifie « éliminer des explications non nécessaires d'un phénomène » et du philosophe du Guillaume d'Ockham. Également appelé principe de simplicité, principe d'économie ou principe de parcimonie (en latin « lex parsimoniae »), il peut se formuler comme suit : Une formulation plus moderne est que .
Réseau bayésienEn informatique et en statistique, un réseau bayésien est un modèle graphique probabiliste représentant un ensemble de variables aléatoires sous la forme d'un graphe orienté acyclique. Intuitivement, un réseau bayésien est à la fois : un modèle de représentation des connaissances ; une « machine à calculer » des probabilités conditionnelles une base pour des systèmes d'aide à la décision Pour un domaine donné (par exemple médical), on décrit les relations causales entre variables d'intérêt par un graphe.
Processus de Poissonvignette|Schéma expliquant le processus de Poisson Un processus de Poisson, nommé d'après le mathématicien français Siméon Denis Poisson et la loi du même nom, est un processus de comptage classique dont l'équivalent discret est la somme d'un processus de Bernoulli. C'est le plus simple et le plus utilisé des processus modélisant une . C'est un processus de Markov, et même le plus simple des processus de naissance et de mort (ici un processus de naissance pur).
Multilevel modelMultilevel models (also known as hierarchical linear models, linear mixed-effect model, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped.
Distance matrices in phylogenyDistance matrices are used in phylogeny as non-parametric distance methods and were originally applied to phenetic data using a matrix of pairwise distances. These distances are then reconciled to produce a tree (a phylogram, with informative branch lengths). The distance matrix can come from a number of different sources, including measured distance (for example from immunological studies) or morphometric analysis, various pairwise distance formulae (such as euclidean distance) applied to discrete morphological characters, or genetic distance from sequence, restriction fragment, or allozyme data.