ViscositéLa viscosité (du latin viscum, gui, glu) peut être définie comme l'ensemble des phénomènes de résistance au mouvement d'un fluide pour un écoulement avec ou sans turbulence. La viscosité diminue la liberté d'écoulement du fluide et dissipe son énergie. Deux grandeurs physiques caractérisent la viscosité : la viscosité dynamique (celle utilisée le plus généralement) et la seconde viscosité ou la viscosité de volume. On utilise aussi des grandeurs dérivées : fluidité, viscosité cinématique ou viscosité élongationnelle.
Compressible flowCompressible flow (or gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density. While all flows are compressible, flows are usually treated as being incompressible when the Mach number (the ratio of the speed of the flow to the speed of sound) is smaller than 0.3 (since the density change due to velocity is about 5% in that case). The study of compressible flow is relevant to high-speed aircraft, jet engines, rocket motors, high-speed entry into a planetary atmosphere, gas pipelines, commercial applications such as abrasive blasting, and many other fields.
Apparent viscosityIn fluid mechanics, apparent viscosity (sometimes denoted η) is the shear stress applied to a fluid divided by the shear rate: For a Newtonian fluid, the apparent viscosity is constant, and equal to the Newtonian viscosity of the fluid, but for non-Newtonian fluids, the apparent viscosity depends on the shear rate. Apparent viscosity has the SI derived unit Pa·s (Pascal-second), but the centipoise is frequently used in practice: (1 mPa·s = 1 cP).
Dynamique des fluidesLa dynamique des fluides (hydrodynamique ou aérodynamique), est l'étude des mouvements des fluides, qu'ils soient liquides ou gazeux. Elle fait partie de la mécanique des fluides avec l'hydrostatique (statique des fluides). La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme la vitesse, la viscosité, la densité, la pression et la température en tant que fonctions de l'espace et du temps.
Équations de Navier-Stokesthumb|Léonard de Vinci : écoulement dans une fontaine En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides newtoniens (donc des gaz et de la majeure partie des liquides). La résolution de ces équations modélisant un fluide comme un milieu continu à une seule phase est difficile, et l'existence mathématique de solutions des équations de Navier-Stokes n'est pas démontrée.
Fluide incompressibleUn fluide incompressible est un fluide dont le volume est considéré comme constant quelle que soit la pression qu'il subit, tout fluide étant en réalité sensible à la pression. Par nature, tous les fluides sont compressibles, certains plus que d'autres, et en phase gazeuse considérablement plus qu'en phase liquide. La compressibilité d'un fluide mesure la variation de volume d'une certaine quantité de ce fluide lorsqu'il est soumis à une pression extérieure.
Viscous stress tensorThe viscous stress tensor is a tensor used in continuum mechanics to model the part of the stress at a point within some material that can be attributed to the strain rate, the rate at which it is deforming around that point. The viscous stress tensor is formally similar to the elastic stress tensor (Cauchy tensor) that describes internal forces in an elastic material due to its deformation. Both tensors map the normal vector of a surface element to the density and direction of the stress acting on that surface element.
Hypersoniquethumb|200px|Représentation informatique de la dynamique des fluides autour du X-43 Scramjet à Mach 7 En aérodynamique, les vitesses hypersoniques sont des vitesses qui sont hautement supersoniques. En général, on considère que ce régime d'écoulement est atteint à partir de environ. Le régime hypersonique est un sous-élément du régime supersonique. Le régime d'écoulement hypersonique est atteint lorsque des réactions de dissociation moléculaire sont présentes au sein du gaz en écoulement : ce dernier peut être localement tellement chaud qu'un plasma se crée.
Forme bilinéaireEn mathématiques, plus précisément en algèbre linéaire, une forme bilinéaire est une application qui à un couple de vecteurs associe un scalaire, et qui a la particularité d'être linéaire en ses deux arguments. Autrement dit, étant donné un espace vectoriel V sur un corps commutatif K, il s'agit d'une application f : V × V → K telle que, pour tous et tous , Les formes bilinéaires sont naturellement introduites pour les produits scalaires.
Forme sesquilinéaireEn algèbre, une forme sesquilinéaire sur un espace vectoriel complexe E est une application de E × E dans C, linéaire selon l'une des variables et semi-linéaire par rapport à l'autre variable. Elle possède donc une propriété de « un-et-demi » linéarité (cf. préfixe sesqui, qui signifie "dans un rapport de un et demi"). C'est l'équivalent complexe des formes bilinéaires réelles. Les formes sesquilinéaires les plus étudiées sont les formes hermitiennes qui correspondent aux formes bilinéaires (réelles) symétriques.