Publication

DeepBND: A machine learning approach to enhance multiscale solid mechanics

Résumé

Effective properties of materials with random heterogeneous structures are typically determined by homogenising the mechanical quantity of interest in a window of observation. The entire problem setting encompasses the solution of a local PDE and some averaging formula for the quantity of interest in such domain. There are relatively standard methods in the literature to completely determine the formulation except for two choices: i) the local domain itself and the ii) boundary conditions. Hence, the modelling errors are governed by the quality of these two choices. The choice i) relates to the degree of representativeness of a microscale sample, i.e., it is essentially a statistical characteristic. Naturally, its reliability is higher as the size of the observation window becomes larger and/or the number of samples increases. On the other hand, excepting few special cases there is no automatic guideline to handle ii). Although it is known that the overall effect of boundary condition becomes less important with the size of the microscale domain, the computational cost to simulate such large problem several times might be prohibitive even for relatively small accuracy requirements. Here we introduce a machine learning procedure to select most suitable boundary conditions for multiscale problems, particularly those arising in solid mechanics. We propose the combination Reduced-Order Models and Deep Neural Networks in an offline phase, whilst the online phase consists in the very same homogenisation procedure plus one (cheap) evaluation of the trained model for boundary conditions. Hence, the method allows an implementation with minimal changes in existing codes and the use of relatively small domains without losing accuracy, which reduces the computational cost by several orders of magnitude. A few test cases accounting for random circular and elliptical inclusions are reported aiming at proving the potentials of the DeepBND method.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Condition aux limites de Neumann
En mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Condition aux limites de Robin
En mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Condition aux limites de Dirichlet
En mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Afficher plus
Publications associées (149)

An interior penalty coupling strategy for isogeometric non-conformal Kirchhoff-Love shell patches

Annalisa Buffa, Pablo Antolin Sanchez, Giuliano Guarino

This work focuses on the coupling of trimmed shell patches using Isogeometric Analysis, based on higher continuity splines that seamlessly meet the C 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackag ...
Springer2024

Exponential convergence to steady-states for trajectories of a damped dynamical system modeling adhesive strings

Nicola De Nitti

We study the global well-posedness and asymptotic behavior for a semilinear damped wave equation with Neumann boundary conditions, modeling a one-dimensional linearly elastic body interacting with a rigid substrate through an adhesive material. The key fea ...
World Scientific Publ Co Pte Ltd2024

The Advection Boundary Law in presence of mean-flow and spinning modes

In the attempt to reduce fuel consumption, a new generation of Ultra-High-By-Pass-Ratio (UHBR) turbofans have been introduced in the aeronautic industry which are structurally noisier especially at lower frequencies, because of their larger diameter, lower ...
SPIE2024
Afficher plus
MOOCs associés (24)
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.